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ABSTRACT
The dynamic plate loading test using the Light-Weight Deflectometer is an innovative field 

test designed to determine the dynamic deformation modulus of subsoils and fills in all types 

of earth working and ground engineering applications. In earth working, the test can be used 

for compaction control and for assessing the load-bearing capacity of the subsoil. 

This  article  compares  the  results  of  numerical  investigations  on  the  Light-Weight 

Deflectometer obtained with the boundary element method against results from experimental 

tests.

1.  INTRODUCTION
The  dynamic  plate  loading  test  using  the  Light-Weight  Deflectometer  (LWD)  has  been 

developed as a test procedure for the determination of the dynamic deformation modulus Evd 

of soils and unbound fill materials [12], [9].

The test consists of subjecting the soil to a pulse load applied via a disk-shaped steel plate that 

is assumed to be rigid. The loading mechanism consists of a drop weight that, once released, 

falls along a rod until it hits a dashpot unit. The loading device is positioned on a centring 

sphere in the middle of the disk so that only compressive forces can be transmitted to the 

loading plate. A sensor connected to an electronic meter is installed in the middle of the plate. 

It records the movements of the plate even while the test is being carried out (see Fig. 1) [1].

The evaluation procedure is based on a simple principle. After completion of the test, the 

maximum displacement of the plate is calculated by means of double/single integrals of the 

accelerations  and  oscillation  speeds.  All  other  parameters  required  for  determining  the 

dynamic deformation modulus, including specifically contact stress between the plate and the 

ground,  are  assumed  to  be  constant.  This  approximation,  which  has  been  recognised  as 

appropriate,  can be justified by the mutual  adjustment  of equipment  parameters  and their 



adjustment to the subsoil characteristics being expected. These adjustments and the resulting 

equipment configuration are based on extensive  model  calculations  and parameter studies 

conducted primarily by  Weingart and published as early as 1977 as part of his dissertation 

[12], [13].

Fig. 1: Components of the Light-Weight Deflectometer [1], [5].

2. TEST SPECIFICATION FOR LIGHT-WEIGHT DEFLECTOMETER

2.1. General requirements and equipment calibration
The  relevant  equipment  parameters  have  been  standardised  to  create  uniform  boundary 

conditions  for  conducting  tests  with  different  LWD  products.  Detailed  instructions  are 

provided  in  the  German  specification  TP BF StB, Part B 8.3  edition 2003  “Dynamischer 

Plattendruckversuch mit Leichtem Fallgewichtsgerät” [10] (dynamic plate loading test using 

the  Leight-Weight  Deflectometer)  issued  by  Forschungsgesellschaft  für  Straßen-  und 

Verkehrswesen. The specifications given in Table 1 thus have to be complied with within the 

tolerances specified.

An important part of the Test Specifications is the instructions for the calibration of the LWD, 

which has to be carried out by recognised institutions prior to delivery, after repair work and 

periodically at least once a year.

The loading device (peak value of load pulse) is calibrated by adjusting the drop height of the 

device. In devices using (steel) disk springs, changing the stiffness of the spring can be used 

additionally for calibration purposes.



The deflectometer  has  to  be adjusted to the measuring range of  the deflection amplitude 

indicated in Table 1 by means of the previously calibrated drop weight. Beyond that, the user 

has to check the deflectometer periodically by means of a simplified procedure.

Table 1: Requirements  to  be  met  by  the  Light-Weight  Deflectometer  according  to 
TP BF StB, Part B 8.3.

Load plate made of steel, minimum St 52-3 (tolerance for equipment dimensions: 1%)
Diameter 300 mm ± 0.5 mm
Plate thickness 20 mm ± 0.2 mm
Mass 15 kg ± 0.25 kg (incl. sensors, handles)
Roughness max. 6.3 µm
Deflectometer
Frequency range 8 – 100 Hz (temperature 0 to 40°C)
Deflection amplitude 0.3 – 1.5 mm Minimum measuring accuracy ± 0.015 mm

(simplified)

Loading mechanism
Mass of drop weight 10 kg ± 0.1 kg
Total mass of guide rod 5 kg ± 0.1 kg (incl. dashpot unit)
Maximum pulse load 7.07 kN (± 1%, temperature 0 to 40°C)
Duration of load pulse 17 ms ± 1.5 ms

The equipment dimensions and masses listed in the Table above were used for the numerical 

investigations with the boundary element method.

2.2. Standardised test procedure and analysis
In the standardised test procedure, the plate is placed to rest horizontally and firmly on the site 

to be tested. A thin layer of sand may have to be placed below the plate to compensate for any 

unevenness. Three seating drops should be made to produce full contact between the plate and 

the  soil.  Then  three  further  drops  are  made  in  the  same  manner,  for  which  the  plate 

displacement is recorded by means of the electronic meter. The mean value of the three peaks 

of  vertical  displacements  recorded  (designated  “Setzung  s”  (“deflection  s”)  in  the 

specification) forms the basis for the determination of the dynamic deformation modulus Evd. 

For this purpose, two simplifying assumptions are made:

The dynamic plate loading test is evaluated using the formula of the static plate load test, 

which is based on the theory of the statically loaded elastic halfspace:

z
rEv ∆

σ∆⋅⋅= 5,1 (1)

with Ev being the deformation modulus of the subsoil, r the radius of the plate, ∆σ the change 

in mean contact pressure, and ∆z the corresponding vertical displacement of the plate. This 



simplified  approach  ignores,  however,  speed-related  factors  and  inertial  forces  in  the 

evaluation of the test.

In addition, it is assumed hypothetically that the maximum mean load  σ acting on the soil 

during the test is generally a constant (0.1 MN/m²). This simplification degenerates equation 

(1)  for  a  load  plate  with  a  diameter  of  30 cm  to  the  following  term  for  the  dynamic 

deformation modulus:

[mm]
5,22²][MN/m

max
vd z

E = (2)

Thus,  determination  of  Evd in  the  analysis  of  the  LWD test  is  based  solely  on  the  peak 

deflection zmax recorded (Fig. 2) [3].

Fig. 2: Load acting on the soil and displacement and working diagram of the LWD plate [1], [5].

3. NUMERICAL ANALYSES OF THE DYNAMIC PLATE LOADING TEST 
USING THE BOUNDARY ELEMENT METHOD

3.1. The  boundary  element  method  and  its  application  in  numerical 
analyses with the substructure method

The basic  principle  underlying  the boundary element  method (BEM) is  that  the variables 

”path” and “force” recorded on the boundary of a component uniquely define the strains and 

stresses in its interior  [4], [8].  Hence, the influence functions and coupling conditions are 

related only to the boundary of the area being investigated. The dimension of the problem 

being considered is thus reduced by one dimension. A 3-dimensional body therefore has to be 

discretised  only  on  its  2-dimensional  surface.  2-dimensional  problems  are  reduced  to 

consideration of the 1-dimensional boundary line. The number of degrees of freedom and thus 



the  dimension  of  the  equation  to  be  solved  is  thus  reduced  significantly  compared  with 

domain methods such as the finite elements methods (FEM). A crucial advantage, specifically 

in dynamic tests, is that BEM allows the formulation of boundary conditions even at infinity. 

Thus,  at  such a boundary defined by “semi-infinite” elements  (“enclosing elements”),  the 

energy of a compression or shear wave can dissipate into the simulated half-space without any 

significant  reflections,  allowing  the  so-called  geometric  damping  of  the  half-space  to  be 

accounted for “with accuracy”. The FEM and other domain methods also allow the definition 

of “semi-infinite” elements, but their use is much more problematical than BEM in terms of 

theory and computational effort.

Once a model has been solved with BEM on the boundary of the area examined, all state 

variables at any point within the domain can be determined from this result in post-processing 

calculations.  The BEM approach satisfies the differential  equations fully.  Discretisation is 

carried out only at the boundary, with the resulting errors decreasing with increasing distance 

from the discretised boundary in accordance with Saint Venant’s principle. Such inexactness 

at the boundary is due to the fact that it is impossible to solve the integration analytically in 

closed form. Thus, the integration has to be carried out numerically, which, however, can be 

done  much  more  exactly  and  in  a  more  stable  manner  than  a  numerical  differentiation. 

Compared with FEM, BEM produces a smaller system of equations and thus requires less 

computation time while yielding higher computational accuracy.

While BEM offers some advantages over domain methods, it also has a number of practical 

and theoretical limitations and drawbacks. Thus, the unique description of an area through 

discretisation requires the behaviour of the material on its boundary to be linear elastic. While 

there are theoretical approaches for expanding the application of BEM to non-linear material 

behaviour, the method loses much of its power in the process. In testing soil dynamics, the 

restriction to linear elastic problems is not a major drawback, however, and one may exploit 

of  the  validity  of  the  superposition  law that  is  thus  ensured.  In  contrast  to  FEM,  BEM 

equations contain non-symmetrical matrices, which require a slightly more complex solution 

algorithm. Since with BEM, only the boundary has to be discretised, significantly smaller 

equation systems are obtained than with FE calculations in similar investigations, and their 

lack of symmetry is therefore not much of a problem. 

At the time when BEM was developed FEM was already well-established in research and 

practice. So far, BEM has been unable to catch up with FEM and therefore the few BEM 

programs that are currently on the market are relatively poorly conceived and not very user 

friendly. 



It is against this backdrop that the following choice of procedure must be seen, in which the 

BEM program used (GPBEST, BESTVIEW) allows dynamic problems to be dealt with in the 

time domain by not more than 20 time steps and in which it is not feasible to transfer the 

result  obtained  for  use  as  an  initial  condition  in  subsequent  calculations  [2],  [6].  This  is 

unacceptable for all dynamic problems arising in practice. Therefore, a much more complex 

approach had to be chosen. The effort involved was justifiable in a university research setting 

but would have been inconceivable in practice.

3.2. Sub-structure method
The BEM programme used has the capability to analyse structures in the frequency domain. 

The solution of the LWD-soil dynamic interaction system including the drop weight contact 

problem (impact,  rebound)  is  not  possible  in  the  frequency domain.  For  this  reason,  the 

system is split into two sub-structures. The two sub-systems are solved separately from each 

other and then, by satisfying the compatibility conditions (force and displacement), coupled 

again at the interface [7].

3.2.1. Sub-structure 1: Drop weight and dashpot unit
Sub-structure 1 comprises the part of the interaction system that has to be solved in the time 

domain. It consists of the drop weight and the dashpot unit plus the corresponding contact and 

rebound condition while the load plate with the rod and its masses are regarded as part of the 

second sub-structure.   The interface between the  two sub-systems  is  the  place  where  the 

dashpot unit  is  connected to the load plate. At this interface,  the compatibility conditions 

regarding force (or stress) and displacement must be satisfied when the systems are coupled 

together. 

For the first sub-structure, a function )(tz  is assumed for the displacement of the bottom end 

of the dashpot unit. When the drop weight hits the dashpot unit, the load plate is still at rest 

and thus  0)0( =z  and 0)0( =z , as the displacement (= deflection of the load plate) is caused 

only by the impact.  The load plate  displacement  )(tz  affects  the progress of the impact, 

which  the drop weight  transmits  via  the  dashpot  unit.  The aim is  to  determine the  force 

progression  )(tF  of the pulse for any function of the plate displacement )(tz  .



Fig. 3: Sub-structure 1: Drop weight and dashpot unit [7].

When an impact is simulated, the drop weight hits the dashpot unit initially at a velocity of 0z  

(Equation 3).

hgz ⋅⋅= 20 (3)

At this time the contact phase starts in which the dashpot unit transmits compressive forces 

from the drop weight to the load plate. The linear momentum equation for the drop weight 

can be formulated as follows:

)()( 000 zzczzkgmzm FF  −⋅−−⋅−⋅=⋅  . (4)

From this, the drop weight acceleration in the contact phase  ( gz <0 )  is derived:
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Loading of the load plate with the radius r 
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produces a mean plate loading stress 
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which acts in the place where the substructures are coupled. It can be computed through direct 

numerical integration of the differential equation.

At the end of the contact phase, the rebound condition  ( gz =0 )  commences. At this time, 

the drop weight floats and does not transmit any forces. In a permanently coupled system, this 

would be the time when the sign of the loading force changes. However, as the drop weight 

can exert compressive forces only on the dashpot unit, de-coupling occurs at this point and the 

drop weight rebounds, leaving the loading force at zero. 



In order to determine the mean ground contact stress, stresses caused by inertial forces have to 

be deducted from the load-induced stress.

π⋅
⋅+−−⋅=σ 2

0 )()()(
r

zmmzgmt StPlF 
(8)

Table 2: Equipment parameters for numerical simulation.

Equipment parameters Symbol Size Unit
Drop weight Fm 10 kg
Drop height 0h 70 cm
Mass of load plate Plm 15 kg
Mass of guiding rod Stm 5 kg
Stiffness of spring k 337112,52 N/m
Damping of spring c 129,9147 N/(m/s)

3.2.2. Sub-structure 2: Soil and plate
Substructure 2 includes everything that can be dealt with by BEM in the frequency domain 

(Fig. 4). This comprises the (layered) subsoil and the plate. The problem is defined by means 

of a plane rotationally symmetric model. The soil surface is loaded only by the plate. The 

remaining boundaries are modelled using semi-infinite elements simulating the half-space.

Fig. 4: Sub-structure 2: soil and plate [7].

The top side of the plate is loaded harmonically with a unit load of a 1 kN/m² at different 

frequencies (angular  frequency  ω=2.π.f).  The result  of  the BEM calculation is  the system 

response in the defined boundary points and in selected domain points, with the latter being 

implemented in the model by means of elliptical co-ordinates (Fig. 5). Special attention is 

given to the result of the plate centre P00, as this is needed for coupling the substructures.
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Fig. 6 Transmission functions for the plate centre  P00 of a load plate (r = 150mm, m = 20kg,  ∆
σ = 1kN/m²) to a homogeneous half-space (Eo = Eu = 32 MN/m², ρo = ρu = 2000 kg/m³) for 
various Poisson’s ratios. BEM simulation at 5% material damping (hysteretic), [7]. 
Red: real portion; blue: imaginary portion; green: absolute amount.



Figure 6 shows the transmission functions )(ωZ  of the displacements of the plate centre P00 

determined by BEM in the frequency domain. For the Poisson’s ratios  v  investigated,  the 

simulation model was calculated by means of BEM in the frequency domain from 0  Hz to 

500 Hz. For each examined frequency ω, one imaginary number (real and imaginary portions: 

red  and  blue  in  the  diagram)  was  obtained,  which  describes  the  phasing  of  the  system 

response  and,  by  the  absolute  amount  (green  in  the  diagram),  the  amplitude.   Material 

damping was assumed to be relatively low at 5%. Given the geometric damping of the half-

space,  material  damping  would  not  even  have  been  necessary  at  all  but  it  provides  for 

smoother transmission functions. With the BEM program used, damping can be taken into 

account only in the form of a complex stiffness matrix, which allows only hysteretic damping 

(with  damping  forces  being  proportional  to  the  elastic  forces)  but  no  viscous  damping 

(damping forces proportional to frequency). In the static case (excitation frequency = 0 Hz), 

the  imaginary  portion  of  the  transmission  function  would  have  to  disappear,  which  with 

viscous damping is actually the case. With hysteretic damping, the imaginary portion does not 

converge to zero as the excitation frequency falls, however, which may produce false results. 

At high frequencies, calculations with hysteretic damping often provide more realistic results 

than with viscous damping. In the parametric studies, material damping was ignored.

3.2.3. Coupling the substructures
The interaction system is now solved iteratively:

Substructure 1 is solved initially without plate displacement ( 0)( =tz ). The result  )(0 tσ  is 

transformed into the frequency domain using Fourier transformation )(0 ωσ . The solution for 

substructure 2 in the frequency domain is obtained by multiplying stress by the transmission 

function  )(ωZ .

)()()( 0 ω⋅ωσ=ω Zz (9)

The  plate  displacement  )(ωz  calculated  in  this  manner  in  the  frequency domain  is  then 

transformed  into  the  time  domain  by  inverse  Fourier  transformation  and  is  used  as  new 

assumption for )(tz  in substructure 1. 

This  cycle  is  continued until  convergence is  achieved.  Convergence means that  )(tz  and 

)(0 tσ  (and the corresponding  )(ωz  and  )(0 ωσ ) represent solutions for both substructures. 

Therefore, the compatibility conditions at the interface of the structures are satisfied and the 

structured are thus coupled.



It is only after coupling that the transmission functions )(ωSPZ  and )(ωΣ SP  are required for 

the domain points (“sampling points”) in order to obtain the state variables in the frequency 

domain through multiplication by the “final” load )(0 ωσ . These are transformed into the time 

domain through inverse Fourier transformation. 

)()()( 0 ω⋅ωσ=ω SPSP Zz )(tzFFTinverse SP→→ Displacements over time (10a)

)()()( 0 ωΣ⋅ωσ=ωσ SPSP )(tFFTinverse SPσ→→ Stresses over time  (10b)

Now the data are available for further processing. A program for the individual time steps 

assigns them to the corresponding points by colour. The resulting images are combined into a 

video that illustrates the change in the individual state variables during an impact (Table 4).

Figure 7 illustrates  the  procedure  described and Table 3  lists  the  programs required.  This 

demonstrates the level of effort needed, which can be undertaken within the framework of a 

scientific study of a soil dynamics problem but which appears disproportionately large for the 

standardised management of problems arising in the field in practice.

Table 3: Programs  required  for  the  numerical  simulation  of  the  dynamic  load  plate  using  the 
boundary element method [7].

No. Program Task
1 FORCE Writing FORTRAN programs
2 EXCEED Link to work station
3 BESTVIEW Modelling of substructure 2, generation for GPBEST
4 vi-Editor Modification of generated BESTVIEW file

5 FORTRAN Generating files with sampling points and the file with the excitation 
frequencies

6 batch job 
under UNIX

Modification of edited BESTVIEW file, starting BEM calculations and 
production of result files

7 GPBEST BEM calculation (for calling by batch job see No. 6)

8 FORTRAN Reading transmission functions for the place centre and sampling 
points.

9 FTP File transfer (UNIX-WINDOWS)

10 MATLAB
Reading transmission function for the plate centre. Solution for 
substructure 1 and iterative coupling of the two substructures (in 
frequency and time domains)

11 MATLAB

Reading the transmission functions of all sampling points. Computing 
sampling points using the solution obtained (No. 10) and the 
transmission functions in the frequency domain, transformation in the 
time domain, generation of colour images (stresses, velocity, 
deformation…)

12 EXCEL Presentation of characteristics of dynamic load plate tests on 
homogenous and layered half-spaces

13 PREMIERE Combination of colour images into a video



Fig. 7: Illustration of substructure method and the solution path for coupling the structures for 
simulating the dynamic load plate using BEM [7].

-



Figure 8 shows a typical result after coupling of the structures. The top left chart shows the 

stress caused by the impact of the drop weight (red) and the soil contact stress taking into 

account the inertial forces of the plate and of the rod (light blue). One can see that with this 

calculation  brief  tensile  stresses  occur  in  the  plate-soil  contact  joint  after  the  impact.  In 

practice, however, this will happen only in the case of cohesive soils and will not exceed the 

magnitude of the air pressure. However, as in all evaluations of the dynamic load plate test 

only the loading phase is of relevance, this effect can be ignored. The top right diagram shows 

the  development  of  velocity.  The  green  line  in  the  bottom  left  chart  shows  the  soil 

displacement, the bottom right working diagram plots the stress caused by the impact of the 

drop weight  (magenta-coloured points)  and soil  contact  stresses  (blue line).  The dynamic 

nature of the test is reflected by the fact that maximum displacement occurs only after the 

time of maximum loading.

Fig. 8: MATLAB  result  sheet  for  a  coupled  system  (homogenous  half-space,  E = 32 MN/m², 
without  material  damping)  with  the  transmission  function  derived  from  the  BEM 
computation [7].

Table 4 shows the time sequence (from the start of the contact phase) of the related vertical 

displacements (in % of maximum displacement), which is the result of the computation of a 



dynamic plate loading test on a layered subsoil after coupling of the substructures. A layer of 

30 cm thickness with a modulus of elasticity of  Eo = 32 MN/m² rests  on a relatively soft, 

elastically isotropic half-space with a modulus of elasticity of  Eu = 4 MN/m². In the second 

diagram,  the  shock  wave  already  reaches  the  layer  boundary.  The  difference  in  the 

propagation speeds in the two materials is clearly visible from the discontinuity in the iso 

lines where the layers meet. In the third diagram, the peak load (σ0 = 100% σ0max)  has already 

occurred and unloading has commenced. While this unloading is taking place, one can see 

how the shock wave progresses and deflections in the subsoil increase. While in Diagram 8, 

for example, deformation on the surface is already decreasing, it is still increasing at a depth 

of 1 m. The right half of the Table shows how the unloaded plate swings back.

The footage from which these images were taken demonstrates what happens in this dynamic 

test and can be used for testing the plausibility of the results.
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3.3. The measuring depth of the dynamic load plate – results of the BEM 
simulation versus experimental investigations 

The measuring depth of a test method is defined as the depth below which changes in the 

subsoil behaviour have no material influence on the results of the test.

Figure 9 shows an experimental investigation of the measuring depth of the dynamic load 

plate [2], [11]. 

  

Fig. 9: Testing for weak spots: Experimental determination of the measuring depth of the dynamic 
load plate by covering a weak spot by layers of material

For  the  experimental  determination  of  the  measuring  depth,  an  artificial  weak  spot  was 

created by placing a mattress onto stiff ground and then covering it with extensive layers of 

material. Each layer of material was compacted by means of dynamic rollers and finally tests 

were carried out with the dynamic load plate. Each of the tests consisted of three pulses. Each 

deflection was measured, mean value was calculated and from this the modulus was derived 

according to equation (2). As the tests took place at one single point and the plate was not 

moved between the tests, each new test produced a higher value, which can be explained by 

the soil compaction taking place in the course of the test. Where only a small quantity of 

material  was placed above the weak spot,  the latter’s  influence is  still  substantial  but the 

compaction effect described is not yet identifiable as soil above such a weak spot is hardly 

susceptible  to  compaction  (Fig. 9:  bottom left).  Above  stiff  soil,  the  values  recorded  are 

significantly  higher  and  the  compaction  effect  can  be  seen  from  the  rise  in  the  values 

measured, each of which approaches a limit value (Fig. 9: top left). As the layer thickness 

increases, the influence of the subsoil and the weak spot declines and the respective lines 

converge. The level where they meet or turn horizontal marks the measuring depth of the 

dynamic load plate. It is interesting to note that above stiff ground the lines tend to become 



horizontal  already  from  a  layer  depth  of  about  60 cm,  which  corresponds  to  the  actual 

measuring depth of the dynamic load plate.  Above the weak spot, by contrast, the values 

measured converge much more slowly, misleadingly indicating a measuring depth of about 

75 cm. This can be explained by the fact that the soil immediately above the weak spot can 

hardly be compacted for lack of counter-pressure. Thus, from a layer depth of about 60 cm of 

fill material, the dynamic load plate records not the weak spot but the poorly compacted area 

above it. 

Fig. 10: Dynamic  deformation modulus  Evd [MN/m²]  on a  two-layer  subsoil  with  varying  layer 
thickness  to in semi-logarithmic representation. Simulation by means of the substructure 
method using BEM (transmission functions without material damping). Dynamic load plate 
(r = 150 mm, m = 20 kg) mit Eo = 32 MN/m², ν = 0.212 [7].

The result of parameter studies done by means of BEM simulation is shown in Figure 10. For 

the cover layer with variable layer thickness to a modulus of elasticity of Eo = 32 MN/m² was 

assumed, whereas the modulus of elasticity of the subsoil Eu was set at 4, 8, 16, 32, 64, 128 

and 256 MN/m² (22, 23, 24, 25, 26, 27, 28). The ratio of the modulus of elasticity  Eo/Eu thus 

varies from 8/1 (“medium-hard on soft”) and 1/8 (“medium hard on hard”). Figure 10 shows 

the deformation modulus Evd computed from the deformations by means of Equation 2 against 

the thickness of the cover layer to and different moduli of elasticity. On the left of the diagram, 

the thickness of the cover layer is zero; therefore, the deformation modulus corresponds to the 

solution  for  the  homogenous  half-space  with  the  material  properties  of  the  subsoil  (Eu). 

Especially where the level of Evd  is low, the dynamic deformation modulus is higher than the 



corresponding static deformation modulus, as, among other things, larger displacements also 

activate inertial forces that under the brief loading of the test misleadingly point to a higher 

system stiffness. The further one pursues the lines in the diagram to the right, the thicker the 

cover layer becomes, causing the influence of the cover layer material (Eo) to rise while the 

influence of the subsoil (Eu) declines. Therefore, as the thickness of the layer increases, the 

lines converge towards the black line, which represents the solution of the homogeneous half-

space with cover layer properties. The measuring depth has been reached when the subsoil 

properties no longer have any appreciable influence on the result and the lines in the diagram 

have thus reached the black line. In Figure 10, this is the case at a layer thickness of about 

0.60 m, which is quite consistent with the experimental results.

4. CONCLUSION
The boundary element method is ideally suited for the computation of linear-elastic problems. 

As the BEM program used allowed only a very limited number of possible time steps in 

dynamic calculations, it was not possible to carry these out in the time domain. Therefore, the 

substructure method had to be used in the numerical simulation of the dynamic plate load test. 

The boundary element method was used only for determining transmission functions (in the 

frequency domain) of a substructure of the mechanical simulation model, while the solution 

for the second substructure  and the coupling of the two structures had to be obtained by 

means  of  different  programs.  Automation  of  the  variation  of  geometric  conditions  (layer 

thickness) and material parameters allowed the performance of extensive parameter studies 

which, for example, were required for the numerical investigations of the measuring depth of 

the dynamic load plate. The results of the numerical studies were also analysed graphically 

and  provided  plausible  results,  as  is  demonstrated  by  the  good  consistency  of  the 

experimentally and the n umerically determined measuring depth of the dynamic load plate.
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