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ABSTRACT 
 

In this paper mechanical modelling of the dynamic load plate test with the Light Falling Weight 
Device (LFWD) is presented. The LFWD is employed on construction sites to verify the 
compaction degree of soil layers and to evaluate their bearing capacity. The mechanical models 
developed are intended to provide simple and efficient formulations, which allow a large number 
of numerical simulations at low expenses. The motion of the device is characterized by a mass-
spring-dashpot system. Several one-dimensional linear and nonlinear representations of the soil 
are discussed and evaluated. Different phases of motion of the LFWD - soil interaction system 
are identified, and corresponding formulations of the equations of motion are given.  In 
appendices efficient solution procedures of the governing equations of motion are proposed.  
 
Keywords: compaction control, device-soil interaction, motion dependent discontinuities, soil 
dynamics 

 
 

1. INTRODUCTION 
 

The Light Falling Weight Device (LFWD) is an innovative field test method, which provides the 
dynamic deformation modulus of soils and filled materials within earth structures and in ground 
engineering. The device is suitable to prove the compaction degree and to evaluate the bearing 
capacity of the tested soil layer.  The dynamic load plate provides numerous advantages 
compared to the conventional static load plate.  The LFWD is light and robust, and it can be 
carried and operated by a single person on the construction site.  It allows measurements during 
the construction process, and it can also be used in narrow workspaces such as utility trenches. 
The simple operation of the device and the quick test implementation make a higher number of 
tests possible.  Consequently, the quality control of the tested soil layers can be significantly 
improved. 
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In a comprehensive research project [1] conducted at the Institute for Ground 
Engineering and Soil Mechanics, Vienna University of Technology, the dynamic load 
plate test with the LFWD has been investigated.  Parametric studies have been carried out 
in an effort to detect, understand, and explain phenomena arising in the field when the 
LFWD is applied.  Results of large-scale in-situ tests at precisely defined soil conditions 
have been analyzed.  Measured data of traditional and innovative compaction control 
methods (e.g. static load plate test, continuous compaction control) have been set in 
contrast with results from the dynamic load plate test.  Technical prerequisites and 
demands regarding the device have been given.  These studies are to be supplemented by 
outcomes from extensive numerical simulations.  Therefore, in this paper simple 
mechanical models are described, which represent the main effects of the LFWD - soil 
interaction. The motion of the coupled LFWD - soil system can be characterized by a 
composition of linear springs, viscous dampers, and point masses.  Applying a 
substructure technique both subsystems (LFWD and soil) are treated separately, and 
subsequently coupled stepwise by means of compatibility requirements.  These models 
permit a careful dynamic analysis in order to optimize the performance of LFWD systems 
at low expenses.  

 
 

2. CHARACTERIZATION OF THE LIGHT FALLING WEIGHT DEVICE 
(LFWD) 

 
In Figure 1 a sketch of the LFWD is shown. During the field test with the LFWD an 
impact-like load is applied to the subsoil via a rigid circular steel plate (load plate).  The 
load set consists of a falling weight and a guide rod. After release the falling weight slides 
down along the guide rod and hits a spring-damper element made of steel or synthetic 
material.  In general the falling height is approximately 0.7 m.  The rod rests on a sphere 
(without connection) in the middle of the load plate, and thus, only compression forces can 
be transferred onto the load plate.  A sensor installed in the centre of the load plate records 
the acceleration, which subsequently renders the (maximum) plate displacement.  

In a simplified procedure the average maximum plate displacement of three consecutive 
tests leads to an approximation of the dynamic deformation modulus of the tested soil 
layer. Thereby, the maximum soil contact stress is hypothetically assumed to be a 
constant, i.e. it is assumed to be independent from the soil type.  Eventually, the dynamic 
deformation modulus can be related to the compaction degree of the tested soil layer.  For 
details of the test evaluation see e.g. [2, 3].  

According to German provisions [4] the main device parameters are standardized.  In 
the following these parameters are briefly reviewed.  

 
• Load plate:  

Radius 150 mm, thickness 20 mm, mass 15 kg 
• Load set: 

mass of falling weight 10 kg, mass of guide rod 5 kg, maximum impact force 
7.07  
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kN, impact duration 18 ms +(-) 2 ms 
• Measuring instruments: 

Frequency range 8 - 100 Hz, displacement amplitude 0.2 - 1.0 mm: accuracy 
0.02 

mm, 1.0 - 2.0 mm: accuracy 2% 
 
 

 

 

Figure 1. Components of the Light Falling Weight Device (LFWD) 

 
 

3. MECHANICAL MODELING OF THE LFWD 
 

In an approximation the LFWD may be characterized as a spring-dashpot-mass system, as shown 
in Figure 2. The point mass, which rests on the soil, accounts for the mass mp of the load plate 
and the mass ms of the guide rod. The mechanical properties of the spring-damper element are 
modelled as a Kelvin-Voigt body, i.e. a linear spring with stiffness k, and a viscous damper with 
damping coefficient c, Ref. [2].  Depending on the artefact of the LFWD the spring may be 
precompressed (denoted by z0pre).  The viscoelastic spring - damper element connects the point 
mass resting on the soil and a weightless top plate. F denotes the soil contact force.  The falling 
weight is represented by the point mass m and it impacts upon the top plate after its release from 
the height h0.  It is noted that friction between the falling weight and the guide rod can be 
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neglected. 

 

Figure 2. Mechanical model of the LFWD 

 
 

4. MECHANICAL MODELING OF THE SOIL 
 

The dynamic response of the soil can be calculated rigorously based on three-dimensional 
continuum mechanics with numerical methods such as the boundary-element or the finite-
element method.  These procedures are computationally expensive and belong more to the 
discipline of applied computational mechanics.  Because the aim of this investigation is rather to 
understand (examine) the interaction system of soil - LFWD than to carry out a detailed 
investigation of the processes in the soil it seems to be appropriate to focus on simplified 
mechanical models, which reflect the main phenomena occurring during application of the load 
plate test with the LFWD.  Besides their simple configuration these simplified soil models allow 
for a large number of timesaving simulations at low expenses. 

 
4.1 Viscoelastic soil modeling 
The LFWD is applied for testing the load-deformation behaviour of well-compacted soil layers, 
whereas the compaction of the soil itself represents a significant non-linear process.  Thus, for 
the test with the LFWD the soil may be considered in a first approach to be a homogenous ideal 
elastic medium. Wolf and co-workers (see e.g. [5, 6]) have developed in a series of publications 
a simple viscoelastic model, where the soil is idealized as a semi-infinite truncated cone.  For the 
current investigation the approach of Wolf is adopted.  In this idealization the complex dynamic 
soil behaviour is reduced to a viscoelastic one-dimensional wave propagation problem, which 
can be represented by an equivalent frequency independent spring-mass-dashpot system, see 
Figure 3.  
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Figure 3. One-dimensional soil model of the elastic homogeneous halfspace 

 
This model is only capable to simulate the soil reaction on the load plate; dynamic processes 

in the half space cannot be investigated.  The stiffness of the cone is denoted by the spring 
stiffness K, while the wave propagation into the subsoil is associated to the geometric damping 
coefficient C. For cohesive soils the derivation gives an additional mass ∆M, which is, however, 
small compared to the mass (ms + mp) of the loading device.  The importance of material 
damping is of second order for the current interaction problem, and hence neglected [2].  
Depending on the nature of the soil K, C and ∆M are determined from elastic soil characteristics 
such as the dynamic compression modulus Edyn, Poisson's ratio ν and (moisture) density ρ, and 
from the geometry of the loading area, i.e. the radius r of the load plate. According to [5, 7] these 
relations are given by: 

 

 
2dyn )1(
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   for cohesive soils   (4a) 

 
 ∆M = 0 for non-cohesive soils (4b) 

 
The equivalent stiffness K for cohesive and non-cohesive soils is identical, whereas the 

viscous damping coefficients differ for both types of soil.  
Previous studies (e.g. [5, 6, 7]) based on cone models have shown that they provide 
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conceptual clarity with physical insight, simplicity, and sufficient generality, although they do 
lead to some loss of accuracy.  The accuracy of any analysis is limited anyway because of many 
uncertainties such as those linked to dynamic soil properties, some of which can never be 
eliminated.  

 
4.2 Consideration of varying loading/unloading soil stiffness 
Successive repetition of the dynamic load test on the same spot leads to an increasing 
deformation modulus even for well-compacted soil, i.e. the stiffness of the soil increases with 
each impact.  At the same time permanent deformation of the loaded surface can be observed. 
The reason is that dynamic impact loading induces consolidation of the soil by reduction of its 
pore volume.  However, for compacted soil the additional permanent (plastic) portion is small 
compared to the reversible (elastic) portion.  These effects may be accounted to the fact that the 
stiffness of the soil depends on the direction of load.  In general, the soil behaves stiffer when 
unloaded.  

For a more thorough investigation of the soil - LFWD interaction it is desirable to consider 
this behaviour in the soil model. In a first-order approach the loading and unloading branch of 
deformation may be approximated by a piecewise linear function, coming up with a so-called 
saw tooth model (see Figure 4).  

 

Figure 4. Characteristics of the soil spring considering different loading and unloading stiffness 
(saw tooth model) 

The saw tooth model leads to plastic deformation in one direction at cyclic loading. During 
the transition from loading to unloading and vice versa the plastic deformation is modified 
according to a Heaviside function. Compatibility requires that the force in the spring does not 
exhibit a jump at the reversal from unloading to loading (and vice versa).  According to Hooke's 
law [8] this condition may be expressed as: 
 

 ( ) ( )pl pl
k l y u y ulF K z z K z z= − ≡ −  (5) 

 

In equation (5) pl
lz  and 

pl
uz , respectively, represent the portions of plastic deformation in 

the loading and unloading period. Kl and Ku denote the spring stiffness during loading and 
unloading, respectively. For an explanation of Fk, zy see Figure 4. At the instant of transition 
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from unloading to loading equation (5) can be solved for 
pl
uz : 

 
 

 1 plpl l l
u y l

u u

K Kz z z
K K

 
= − + 
 

 (6) 

 
Contrary, pl

lz  can be derived as: 

 

 1pl plu u
y ul

l l

K Kz z z
K K

 
= − + 
 

 (7) 

 
During periods of loading/unloading the plastic deformation is a constant.  
Note that the soil parameters such as stiffness and damping coefficients are still governed by 

equations (1 - 4), however, modulus Edyn is now a function of the loading direction. Hence, it is 
more appropriate to write Edyn,l for loading and Edyn,u for unloading. Inspection of equations (2) 
and (3) reveals that also the damping coefficients depend on the loading direction because the 
are derived among other parameters from Edyn,l  and Edyn,u , respectively. 

However, it should be mentioned that for the evaluation of the dynamic deformation modulus 
after a standard test only the loading phase of the first impact is considered. 

 
4.3 Detailed modelling of the loading area 
In the near field of the load plate the soil is exposed to large stresses and strains, and hence, it 
experiences plastic deformations. However, the far field of the soil remains elastic during the 
entire dynamic process.  Thus, a separate consideration of the near field and the far field seems 
to be reasonable. In a simplified assumption the near field the of soil is modelled by an 
additional soil spring Kp. This spring is in series with the spring-damper element of the 
viscoelastic soil model, determined from the cone theory, see Figure 5. The stiffness Kp of the 
additional spring can be estimated by relating the maximum applied load Pmax , and the 
permanent deformation zpl from a static load test: 

 

 max
P pl

PK
z

=  (8) 

 
For well compacted soils the stiffness Kp will be in any case larger than the stiffness K of the 

spring, which simulates the elastic half space.  
According to the cone theory the additional soil mass ∆M (for cohesive soils) is assigned to 

the top of the upper soil spring. 
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Figure 5. Soil modelling of the loading area by an additional soil spring 

 
 

5. EQUATIONS OF MOTION OF THE LFWD-SOIL  
INTERACTION SYSTEM 

 
The mechanical models of the both subsystems LFWD and soil are coupled by means of 
the substructure technique and application of the compatibility requirements.  
Mechanically the motion of the interaction system can be classified as a system with 
motion dependent discontinuities. In the following considerations the sequence of the 
different phases of motion are identified, and the corresponding mathematical equations 
are specified.  It is noted that soil and load plate are assumed to be connected during the 
entire motion. Hence, the mass of the load plate mp, the mass of the guide rod ms, and the 
equivalent soil mass ∆M can be combined to a single point mass M: 
 
 

 s pM m m M∆= + +  (9) 
 
5.1 Viscoelastic soil model 
Subsequently, the motion of the LFWD and the viscoelastic soil model according to 
section 4.1 is considered, see Figure 6. The displacement of the mass m is denoted by z0, 
whereas the coordinate z is assigned to equivalent mass M.  The spring of the load plate is 
assumed to be precompressed by z0pre. The following phases of motion can be identified. 
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Figure 6. Mechanical modelling of the dynamic interaction system LFWD - elastic soil 

 
Phase 1: fall phase 
At time instant t0 (t = 0) the mass m is released and it falls from the height h0 through the loading 
device. The initial conditions of the masses m and M can be expressed as: 

 
 

 ( )0 0 0 0 prez t h z= − +
 
, ( )0 0z t =  (10) 

 
 
During the fall ( 0 1t t t≤ ≤ ) the displacement and the rate of fall of the mass m are given by 

 
2

0 0 02 pre
tz g h z= − +  ,  0z gt=&  (11) 

 
While the load plate is at rest, 

 
 

 0z z= =&  (12) 
 
 
In (11) g denotes the acceleration of gravity. At time instant t1,  
 

 0
1

2ht
g

=  (13) 
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the mass m hits the weight-less top plate of the load plate model, and subsequently, mass m, load 
plate and soil are in full contact. 

 
Phase 2: full contact phase 
In the full contact phase the behaviour of the model is governed by a coupled system of 
differential equations with two-degree-of freedoms (2DOF): 

 
 

 0 0 00
0 0
m z c c z k k z mg

M z c c C z k k K z
− −             

+ + =            − + − +             

&& &

&& &
 (14) 

 
 
The initial conditions are defined by equations (11, 12) at time instant t1. Note that the spring 

of the soil is already precompressed by the dead weight Mg, and consequently Mg does not show 
up on the right hand side of equations (14).  

 As long as the conditions 
 

  ( ) ( )0 0 0 0prekz k z z c z z− + − + − ≤& &    and   0 0 prez z z− ≥  (15) 

 
 
are satisfied mass m and the load device are in full contact. A proper solution procedure of 
equations (14) is given in Appendix A1. 

 
Phase 3: uplift phase 
At time instant t2 the mass m lifts up from the load plate, and during a standard test on the 
construction site investigate also the subsequent motion of the system. 

In test devices with a pre-compressed spring K two different conditions of incipient uplift do 
exist. These conditions are defined as follows: 

- the force in the spring-damper element is zero: 
 

 ( ) ( )0 0 0 0prekz k z z c z z− + − + − =& &  (16) 
 
- the spring cannot expand beyond its pre-compressed length, i.e. the spring deflection 

corresponds to its initial value at time instant t1: 
 

 0 0 prez z z− =  (17) 
 
The condition, which occurs at first, is relevant for uplift. 
In the uplift phase the motion of the mass m is determined by the gravity and the initial 

conditions at t = t2: z0(t2), ( )0 2z t& : 
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( ) ( ) ( )( )

2
2

0 0 2 0 2 22
t t

z g z t z t t t
−

= + + −&  ,   ( ) ( )0 2 0 2z g t t z t= − +& &  (18) 

 
The load plate, which is according to observations in contact to the soil during the entire test 

procedure, is in phase 3 in free vibration and its displacement z is governed by the homogenous 
differential equation of motion 

 
 0Mz Cz Kz+ + =&& &  (19) 

 
and the initial conditions z(t2) and ( )2z t& . 

During the test the guide rod lifts up from the load plate because only force in compression 
can be transferred between both components of the test device.  However, this time-instant is 
insignificant for the mechanical simulation of the test, and subsequently, during this short period 
of time accurate modelling of this effect may be disregarded. When the mass m impacts the load 
plate the second time it can be assumed that guide rod, load plate and soil are already at rest. 
Furthermore, the spring-damper element is supposed to be at its initial position. 

 
Phase 4: re-contact phase 
The time instant t3 of the second impact is derived from the time period of uplift of the mass m: 

 

 
( ) ( )0 2 2

3 2 2
2 2 8r r rh z t z t h ht t t

g g g
+ +  = + + ≈ +  (20) 

 
In (20) hr denotes the rebound height.  The subsequent motion of the coupled system is 

described in analogy to phase 2 by equations (14). The corresponding initial conditions are 
defined by z0(t3), ( )0 3z t&  and ( ) ( )3 3 0z t z t= =& , respectively. 

 
5.2 Consideration of varying loading/unloading soil stiffness 
Here, the soil model of section 4.2 according to a saw tooth is utilized, see Figure 4. The phases 
of discontinuous motion identified in the previous section remain the same, however, in phases 
2, 3 and 4 the equations of motion are to be subdivided in periods of loading and unloading. On 
the left hand side damping and stiffness coefficients of the soil are replaced by load direction 
dependent coefficients, the plastic portion of deformation is considered as additional (so called 
internal) loading, and thus, written on the right hand side [12].  

 
Phases 2 and 4: full contact and re-contact phase, respectively 
The equations of motion (14) are to be separated in periods of loading and unloading, and may 
be written as follows, 

 

 
0 0 00

0 pl
i i i i

mgc c k km z z z
c c C k k KM z z z K z

 − −            + + =            − + − +              

&& &

&& & , i = l, u (21) 
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where subscript i = l denotes the sub phase loading, whereas i = u indicates the sub phase 
unloading. During the transition from loading and unloading not only the modal properties (i.e. 
natural frequencies, modal damping coefficients and mode shapes) of the coupled system vary 
but also the plastic part of deformation according to equations (6) or (7). 

 
Phase 3: uplift phase 
In the uplift phase it is differentiated between the sub phases loading and unloading as well: 

 

 
pl

i iMz Cz Kz K z+ + =&& &  , i = l, u (22) 
 

5.3 Consideration of detailed modelling of the soil in the loading area 
Taking into account inelastic soil behaviour of the loading area according to section 4.3 an 
additional degree of freedom characterizes the motion of the soil. This additional degree of 
freedom is denoted by zp, see Figure 7. Only load devices without precompressed springs are 
considered in the actual formulation. For numerical investigations performed the ratio of εk of 
both soil springs is utilized:  

 

 
p

k
K
K

ε =  (23) 

 
All phases of motion identified in section 5.1 apply; however, differences in the formulation 

of the equations of motion are subsequently outlined. 
 

Phase 1: fall phase 
The soil is at rest, and hence, equations (10 - 13) are still valid (with z0pre = 0).  In addition, 
displacement and rate of the additional degree of freedom are also zero: 
 
 0P Pz z= =&  (24) 
 
Phase 2: full contact phase 
The dynamics of the system in full contact is described by a coupled set of three equations of 
motion, which may be written as  

 

 

0 0 00 0 0 0
0 0 0 0
0 0 0 0 0 00

p p p p p

p p

m z c c z k k z mg
M z c c z k k K K z

Cz z K K K z

      − −                + − + − + − =                        − +            

&& &

&& &

&& &

(25) 

 
The dead weight of mass M does not enter the above equations because both soil springs are 

already pre-compressed by it. At time instant t1,  the vibration of the system is initialized by the 

velocity of the mass m: 0 1z ( t )& , all other initial conditions are zero. In Appendix A2 a proper 
solution procedure is examined.  
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Figure 7. Mechanical modeling of the dynamic interaction system LFWD - soil. Detailed 
modeling of the loading area 

 
Phase 3: uplift phase 
The condition of uplift is determined by condition (16) with z0pre  = 0. In the subsequent phase 
the motion of the coupled load plate - soil model is given by following equations: 
 

 

 
0 0 0 0

0 0 0 0
p pp p p

p p

K Kz z zM
C K K Kz z z

−                + + =            − +                 

&& &

&& &
 (26) 

 
 
For this type of coupled equations with only one dynamic active mass the corresponding 

initial conditions are zp(t2), 2( )pz t& , z(t2). Equations (26) can be solved by application of a 
similar approach as described in Appendix A2 [2]. 

For the displacement and velocity of the mass m expressions (18) hold.  
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Phase 4: re-contact phase 
In this phase the same equations as in phase 2 are employed. The time instant t3 of impact is 
determined by: 

 

 
( ) ( ) ( )0 2 2 2

3 2 2
2 2 8r p r r

h z t z t z t h ht t t
g g g

 + + + = + + ≈ +  (27) 

 
 
It is assumed that load plate and soil are at rest, and hence, all initial conditions besides 
( )0 3z t&  are zero.  
 
 

6. CONCLUSIONS 
 

Different mechanical models for the simulation of dynamic load test with the Light Falling 
Weight Device (LFWD) have been presented in an effort to provide efficient numerical 
algorithms. Depending on the effects to be investigated the tested soil has been characterized by 
means of one-dimensional representations of the half space. Viscoelastic models with varying 
loading and unloading stiffness and with detailed modelling of the loading area have been 
considered. Different phases of discontinued motion have been identified and described by 
mathematical equations. It is noted that comparative studies of measured and simulated data can 
be found in [1, 2, 3, 9].  
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APPENDIX A1 
 

The solution of the coupled set of differential equations (14) is composed of a time invariant 
static portion (denoted by superscript S) and a dynamic portion (denoted by a superscript D), 

 

 0 0 0
S Dz z z= +  ,  S Dz z z= +  (A1) 

with 
 

 0 0 0S Sz z= ≡& &&  ,  0S Sz z= ≡& &&  (A2) 
 
The static displacements of the 2DOF system are derived from the relations 
 

 0
1 1Sz mg
k K

 = + 
 

 ,  
S mgz

K
=  (A3) 
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whereas the complementary dynamic response represented by the 2DOF set of differential 
equations, 

 

 
0 0 00 0

0 0

D D D

D D D

m z c c z k k z
M c c C k k Kz z z

     − −            + + =            − + − +                 

&& &

&& &
 (A4) 

 
is induced by the initial conditions at time instant t1 : 

 
 

 ( )0 1 0 0
D S

prez t z z= − +  ,  ( ) ( )0 1 0 1
Dz t z t=& &  ,  ( )1

D Sz t z= −  ,  ( )1 0Dz t =&  (A5) 
 
 
Equations (A4) are solved by modal decomposition of the geometric coordinates: 
 

 
11 12 10

21 22 2

D

D

Yz

Yz

φ φ
φ φ

       =    
       

 (A6) 

 
where ikφ  are the coefficients of the mode shapes of the undamped system. Because equations 
(A4) are non-proportional damped the modal equations are coupled via non-diagonal modal 
damping coefficients. These equations are formally decoupled by considering the non-diagonal 
terms as fictitious loading, see e.g. Holl [10], Raue and Ziegler [11]: 

 
 

 
* * * *
i i ii i i i im Y c Y k Y P+ + =&& &  ,  

* *
i ik kP c Y= − &  ,  1, 2i k= =  ,  2, 1i k= =  (A7) 

 
 

where *
1m , *

2m  are the modal masses, *
1k , *

2k  denote the modal stiffness, and *
11c , *

22c  and *
12c , 

*
21c  represent the diagonal and the off-diagonal damping terms, respectively, in the modal space 

(see e.g. [11, 12]). This formulation provides two equations of the linear SDOF oscillator, and 
thus, linear solution methods such as Duhamel's integral can be applied, see e.g. Chopra [13]. 
The fictitious loadings *

iP , however, are not known in advance, which necessitates an iterative 
time-stepping procedure to solve equations (A7).  

The initial conditions must also be converted in modal coordinates, e.g. the modal 
displacements at time instant 1t  are given as: 

 
 

 ( ) ( ) ( )0 1 21 1 11
2 1

12 21 11 22

D Dz t z t
Y t

φ φ
φ φ φ φ

−
=

−
 ,  ( ) ( ) ( )0 1 2 1 12

1 1
11

Dz t Y t
Y t

φ
φ
−

=  (A8) 
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Subsequently, the accelerations are found by solving equations (14) for 0z&&  and z&& . 
 
 

APPENDIX A2 
 

Here, the solution of the coupled set of equations of motion (25) is discussed. As already shown 
in Appendix A1 for a 2DOF system the geometric coordinates are separated in a static and 
complementary dynamic portion. For the displacements 0z  and z  relations (A1) and (A2) apply, 
the additional coordinate pz  is supplemented by, 

 

 
S D

p p pz z z= + ,  0S S
p pz z= ≡& &&  (A9) 

 
The quasistatic portion of the response is determined by, 
 

 0
1 pS

p

K K
z mg

k KK
 +

= +  
 

 ,  
pS

P
p

K K
z mg

KK
+

=  ,  
S mgz

K
=  (A10) 

 
the complementary dynamic response is found from the following coupled set of three 
differential equations, 

 

 
0 0 0 00

0

D D D

DD D Dp pp p p

z z k k zm c c
k k KM c c K zz z z
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&& &

&& &
 (A11.1) 

 
 

 ( )D D D
p p pCz K K z K z+ + =&  (A11.2) 

 
and the corresponding initial conditions, 

 
 

 ( )0 1 0
D Sz t z= −  , ( ) ( )0 1 0 1

Dz t z t=& &  ,  ( )1
D S
p pz t z= −  , ( )1 0D

pz t =&  , ( )1
D Sz t z= −  (A12) 

 
Equations (A11) are written as a 2DOF system and a first order differential equation, the 

coupling terms are written on the right hand side. These equations are solved by means of a 
substructure technique, where the coupling terms are treated as additional forces acting on the 
corresponding subsystem [12]. 


