UNSATURATED SOIL MECHANICS IMPLEMENTATION DURING PAVEMENT CONSTRUCTION QUALITY ASSURANCE

April 27, 2010
CTS Annual Conference, Saint Paul, MN

John Siekmeier, PE

Acknowledgements

- Arizona State University
- Colorado School of Mines
- Federal Highway Administration
- Iowa State University
- Loughborough University
- Minnesota Department of Transportation
- Minnesota Local Road Research Board
- National Cooperative Highway Research Board
- University of Illinois
- University of Minnesota
- University of Missouri
- University of Wisconsin

Topics

- M-E Pavement Design Framework
- Performance Based Construction QA
- Unsaturated Soil Mechanics
- What We've Learned
- Next Steps

Mechanistic Empirical Design

- Provides the Framework for Performance Based Material Property Inputs
- Sponsor: MN Local Road Research Board
- Contact: Bruce.Tanquist@state.mn.us

Performance Based Testing

- Achieve agreement between construction quality assurance, pavement design and performance
- Quantify the performance of alternative materials and construction practices
- Show the economic benefit of improved materials and construction practices
- Reward good construction and greater uniformity
- Implement tools that will strengthen the decisions made by construction inspection personnel

General QC/QA Procedure

- Quality Control by the Contractor
 - Prepares Quality Control Plan
 - Includes moisture testing
 - Includes roller compaction value
 - Includes corrective actions to be taken
- Quality Assurance by Agency Owner
 - Review and approval of the Contractor's QC plan
 - QA testing using the light weight deflectometer (LWD) dynamic cone penetrometer (DCP) and moisture tests
 - Approval of the Contractor's QC report
 - Archive of electronic QC and QA data

DCP and LWD Granular Target Values

Grading Number	Moisture Content	Target DPI	Target LWD Deflection Zorn	Inverse DPI
GN	%	mm/drop	mm	drops/10cm
3.1-3.5	5 - 7	10	0.4	10
	7 - 9	12	0.5	8
	9 - 11	16	0.7	6
3.6-4.0	5 - 7	10	0.4	10
	7 - 9	15	0.7	7
	9 - 11	19	0.8	5
4.1-4.5	5 - 7	13	0.6	8
	7 - 9	17	0.7	6
	9 - 11	21	0.9	5
4.6-5.0	5 - 7	15	0.7	7
	7 - 9	19	0.8	5
	9 - 11	23	1.0	4
5.1-5.5	5 - 7	17	0.7	6
	7 - 9	21	0.9	5
	9 - 11	25	1.1	4
5.6-6.0	5 - 7	19	0.8	5
	7 - 9	24	1.1	4
	9 - 11	28	1.2	4

Unsaturated Soil Mechanics

- Strength and Modulus Greatly Affected by Suction
- Suction Depends on Solids, Voids and Water
 - Quantity of Gravel, Sand, Silt, and Clay Particles
 - Distribution of Particles and Voids
 - Particle Shape and Void Shape
 - Packing Density (measure of void space)
 - Moisture Content (measure of water in voids)

Fundamentals of Soil Physics, Hillel 1980

Soil Water Characteristic Curves Minnesota Fine Grained Soils Fredlund and Xing, 1994, Estimated Using Functions of the Plastic Limit 100 Percent of Standard Proctor Density

Soil Water Characteristic Curves Minnesota Fine Grained Soils Fredlund and Xing, 1994, Estimated Using Functions of the Plastic Limit 100 Percent of Standard Proctor Density

Field Moisture as a Percent of Optimum Moisture (Plastic Limit - 5%) (percent)

Deflection Target Value vs Gravimetric Moisture Content 100 Percent of Standard Proctor Density

Zorn Deflection Target Value vs Field Moisture MnDOT Mr k-values estimated using suction and volumetric water at saturation sigma1=100 kPa sigma3=40 kPa 100 Percent of Standard Proctor Density

Standard Proctor Optimum Moisture vs Maximum Relative Density Mn/DOT Textural "all soils" Classification

Zorn Deflection Target Value vs Field Moisture MnDOT Mr k-values estimated using suction and volumetric water at saturation sigma1=100 kPa sigma3=40 kPa 100 Percent of Standard Proctor Density

Why Deflection Target Values?

- Design engineer can determine allowable deflection for each layer of the pavement foundation using pavement design software. This includes the moisture content range allowed during construction and the expected deflections.
- Construction engineer and inspection personnel measure deflection and moisture to verify that the design parameters have been achieved.

LWD Deflection Target and Data vs Percent of Standard Proctor Optimum MnROAD08 PL=19% Optimum Moisture=14% T99Density=115 lbs/ft3

LWD Deflection Target and Data vs Percent of Standard Proctor Optimum US94 2009 Plastic Limit=26% Optimum Moisture=21% T99Den=101 lbs/ft3

Conclusions

- Compaction equipment and field tests are now available that can measure the properties used to design pavements and predict performance.
- LWDs and DCPs can be used during construction quality assurance to efficiently verify design target values.
- Several options exist to quantify moisture and more field measurement devices are coming.
- The time is now to accelerate implementation of performance based quality assurance so that our investments are well spent.

Roadmap: Whats Next

- Purchase more LWDs for performance based QA testing
- Specification to include design-based minimum targets
- Specification to include design-based uniformity targets
- Industry/Agency inspector certification training
- Educate designers, opportunity to refine/validate design
- MnPAVE enhancements to predict construction QA targets
- MnPAVE enhancements to include unsaturated mechanics
- Continued participation with national projects
- Implementation of new moisture/suction QA test

Thank You.

Questions?

http://www.dot.state.mn.us/materials/research_lwd.html

Zorn Deflection Target Value vs Exudation Pressure MnDOT Mr k-values estimated using suction and volumetric water at saturation sigma1=100 kPa sigma3=40 kPa 100 Percent of Standard Proctor Density

Modulus Estimated Using Unsaturated Mechanics vs Measured Plate Load Modulus Plate load data from Mn/DOT Inv. 183, 1968 Plastic limit greater than 10 sigma1 = 100 kPa sigma3 = 40 kPa

Measured Plate Load Modulus (MPa)