

Webinar: Part 3 – Procedures Advanced Method for Compaction Quality Control

Rosemary Pattison

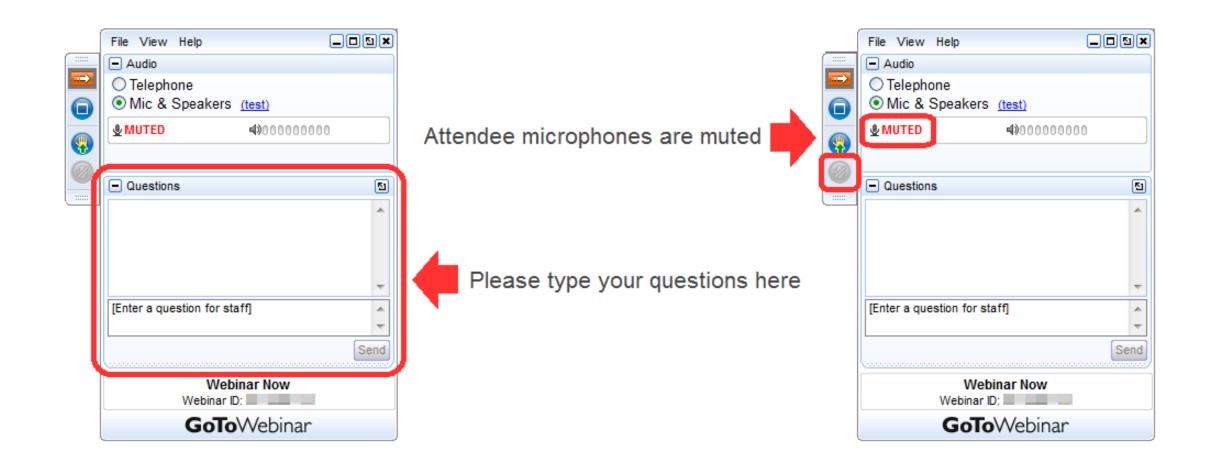
Webinar Moderator

Professional

Knowledge Hub - ARRB Group

P: +61 3 9881 1590 E: training@arrb.com.au

Housekeeping



Webinar 60 mins Questions 5 mins

GoTo Webinar functions

Dr Jeffrey Lee Principal Professional Leader ARRB

Ph: +61 7 3260 3527 jeffrey.lee@arrb.com.au

Dr Burt Look FSG Geotechnics + Foundations

Ph: +61 7 3831 4600 blook@fsg-geotechnics.com.au

Dr David Lacey FSG Geotechnics + Foundations

Ph: +61 7 3831 4600 dlacey@fsg-geotechnics.com.au

P60: Best practice in compaction quality assurance for subgrade materials

ARRB Project Leader: Dr. Jeffrey Lee

TMR Project Manager: Siva Sivakumar

http://nacoe.com.au/

NACOE

NACOE P60

Aim and Background of the Project

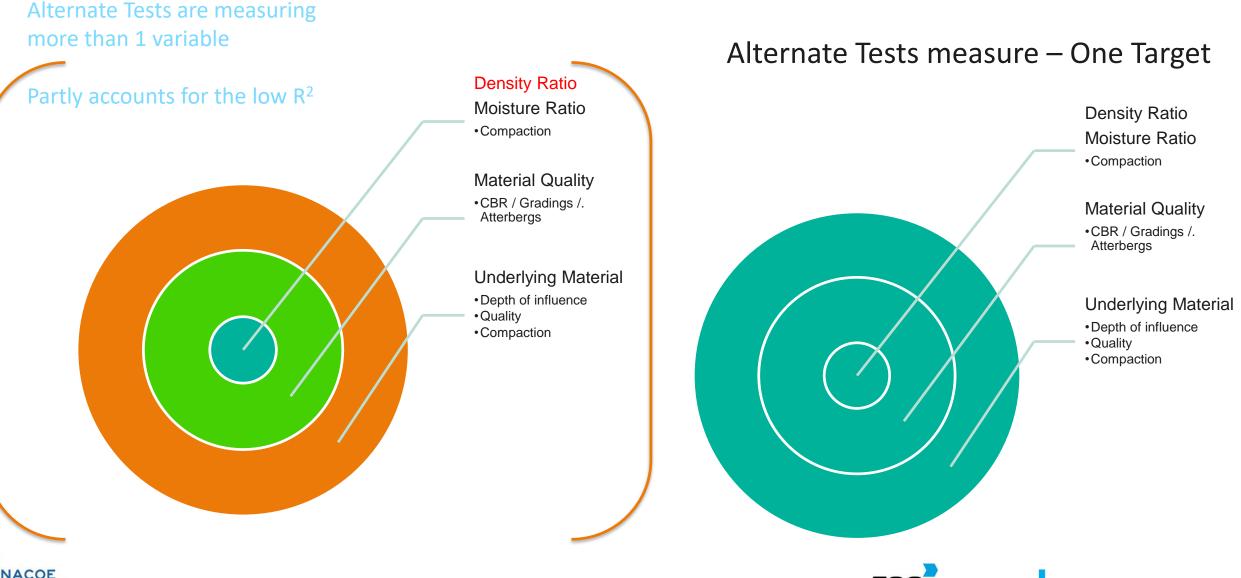
- Aim
 - To modernise testing procedure for compaction quality assurance
- Background
 - Quality is conventionally been verified using density measurements
 - Alternative methods have been developed over the past two decades
 - Many of these methods takes less time to do, results become available in a much shorter time frame, and is able to measure in situ stiffness.

Density Ratio Moisture Ratio • Compaction

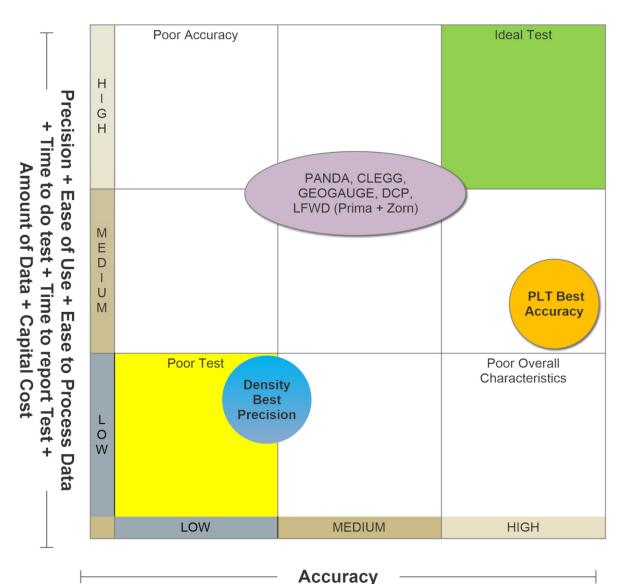
Material Quality

 CBR / Gradings / Atterbergs

Underlying Material


- Depth of influence
- Quality
- Compaction

Summary of Previous 2 Webinars + Basics


Multiple Targets measured: DR + Quality + Underlying interaction

NACOE NATIONAL ASSET CENTRE OF EXCELLENCE 10

RESEARCH ORGANISATION

What industry wants and equipment position

Accuracy vs Other Equipment Characteristics

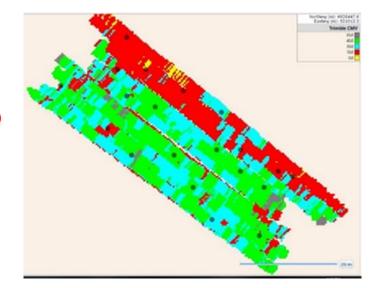
Intelligent Compaction implementation (FHWA 2011)

Univariate Correlations

Correlation of ICMV to NG dry unit density

Figure 96 presents the correlation results between ICMVs and the NG dry unit density r_d . The main conclusions are summarized as follows:

- ICMV increases with increasing r_d as expected, and overall a poorer correlation is achieved than that of E_{LWD} , E_{FWD} , and E_{V1} and E_{V2} ;
- Dependent on the specific test strip and materials, either the direct linear, or the logarithmic scaled linear function may achieve better correlation;
- For some cases, significant scatter in the relationships is shown (e.g. MS TBs1, 2, 4 CCV, and KS TB1 and TB2 MDP80). These values are likely influenced by different material type encountered and narrow range of MDP80 values on each material type.
- Different materials show different correlation results and variation trends (e.g. KS TB3 foundation shale and clay materials). These separate trends could be a result of differences in the underlying support, material, and moisture conditions.


Accelerated Implementation of Intelligent Compaction Technology for Embankment Subgrade Soils, Aggregate Base, and Asphalt Pavement Materials

Final Report

Publication No. FHWA-IF-12-002

July 2011

The future of Modulus Based Measurements

READY RESULTS Next Steps to Put NCHRP Research into Practice

FOCUS ON: NCHRP Project 10-84

Measuring Modulus for Better-Performing Pavements

During field tests, researchers compared several devices for measuring compacted geomaterials, including lightweight deflectometers, portable seismic property analyzers, and the GeoGauge.

REAL-WORLD NEED

NACOE

NATIONAL ASSET CENTRE OF EXCELLENCE Proper compaction of roadway base and subbase is vital to ensuring good performance of a pavement throughout its life span. While density measurement has traditionally been used to indicate geomaterial compaction, this practice has limitations. Modulus, a measure of stiffness, is a better predictor of performance and provides inputs necessary for mechanistic-empirical design. Measuring modulus is particularly important for predicting the performance of recycled materials since there is little data relating the density of these materials to their strength.

NEXT STEPS Put It into Practice

May 2017

DEMONSTRATE

Introduce the new specification gradually in pilot projects with your staff and contractors who are open to the new approach.

COLLABORATE

Work closely with your staff and contractors to ease the culture shock that may result from the new approach.

EVALUATE

As projects are built using the new specification, collect feedback and adjust protocols as needed.

ADAPT Take advantage of the

WHAT WE LEARNED

The proposed Standard Specification for Modulus-Based Quality Management of Earthwork and Unbound Aggregates provides a flexible method for measuring the modulus of compacted geomaterials that can be adapted to local requirements and materials. The proposed specification also includes a process for selecting a target modulus for specific compacted geomaterials. Several devices successfully measured modulus, although lightweight deflectometers are recommended due to their ease of use and widespread availability. Different kinds of deflectometers provided different measurements, however, so construction specifications should specify which model of deflectometer should be used.

Modulus is one material

property that directly relates to

the long-term performance of

pavement. As a result, it can be

design, which can help agencies

maximize the value they get from

performance needs without using

their construction investments

by designing roads to meet

more construction materials

be valuable as agencies use

construction.

more recycled geomaterials in

than necessary. A specification

for measuring modulus will also

used in mechanistic-empirical

WHY IT MATTERS

Several technologies for measuring the modulus of compacted geomaterials performed reasonably well, but lightweight deflectometers are recommended due to their ease of use and widespread availability.

FINAL PRODUCTS NCHRP Research Results Digest 391: Modulus-Based Construction Specification for Compaction of Earthwork and Unbound Aggregate trb.org/Main/Blurbs/172045.aspx

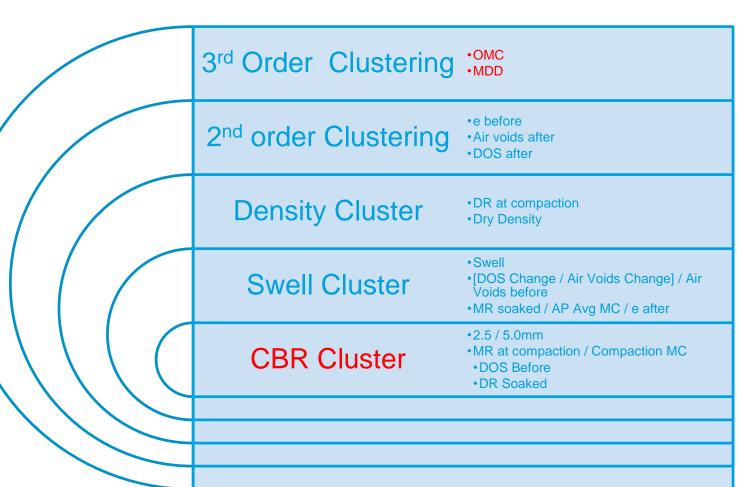
Contractor's report and appendices apps.trb.org/cmsfeed/TRBNetProject Display.asp?ProjectID=2908

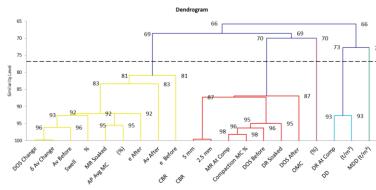
NCHRP SENIOR PROGRAM OFFICER Edward Harrigan | eharrigan@nas.edu

PRINCIPAL INVESTIGATOR Soheil Nazarian | nazarian@utep.edu

ADDITIONAL RESOURCES

Modulus-Based Construction webinar trb.org/ElectronicSessions/Blurbs/ 173279.aspx


MnPAVE pavement design tool mndot.gov/app/mnpave/index.html


Pooled Fund Study TPF-5(285) pooledfund.org/Details/Study/527

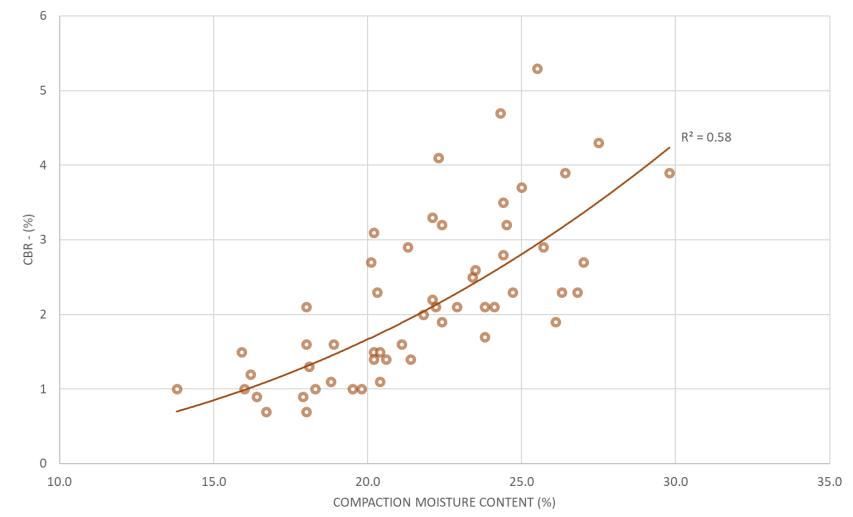
The National Academies of SCIENCES • ENGINEERING • MEDICINE

Dendrogram Clusters (20 variables)

Measuring Density may not be indicative of strength / modulus


Not clustered

CBR related mainly to MC and MR at compaction


CBR (~Modulus) is less related to compaction density

15

CBR (Modulus) is related to compaction MC

Cooroy Bypass

Unsaturated soil models based on VMC

Note Dry Density is only a minor part of these strength models

Fredlund DG, Xing A, Fredlund MD, Barbour SL. The relationship of the unsaturated soil shear to the soil-water characteristic curve. Can Geotech J 1996;33(3):440–8.

$$\tau = c' + (\sigma - u_w) \tan \phi' + (u_a - u_w) \left[\vartheta^{\kappa} \tan \phi' \right]$$

Volumetric Moisture Content (θ)

= Volume of water / Total Volume

$$\theta = \mathbf{w} \; \gamma_{\mathsf{d}} \, / \gamma_{\mathsf{w}}$$

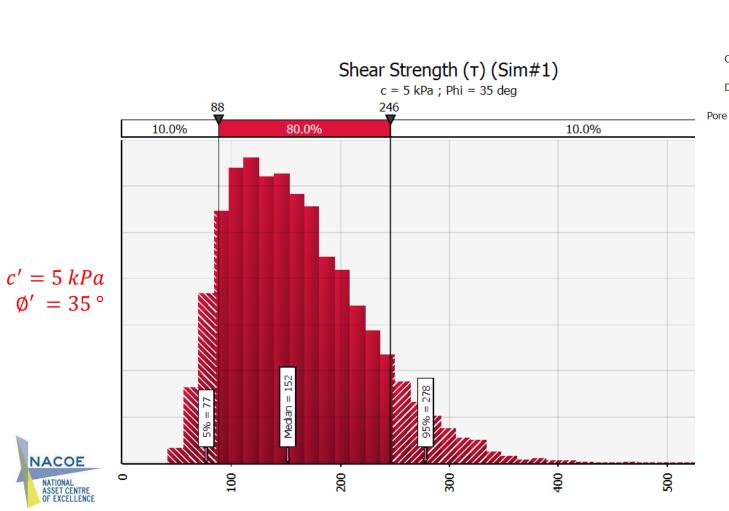
 γ_w = unit weight of water γ_d = dry unit weight of soil

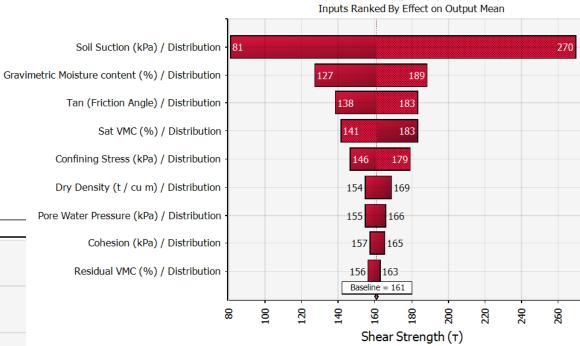
$$\tau = c' + (\sigma - u_w) \tan \emptyset' + (u_a - u_w) \left[\tan \emptyset' \left(\frac{\theta - \theta_r}{\theta_s - \theta_r} \right) \right]$$

Vanapalli SK, Fredlund DG, Pufahl DE, Clifton AW. Model for the prediction of shear strength with respect to soil suction. Can Geotech J 1996;33(3):379–92.

 $\tau = unstaurated sher strength$ c' = effective cohesion $\begin{pmatrix} \sigma = total confining stress \\ u_w = pore water pressure \end{pmatrix}$ $\emptyset' = effective friction angle$

 ϑ = normalized volumetric moisture content = $\theta/_{\theta s}$ where θ = volumetric moisture content and θ_s = volumetric water content at saturation

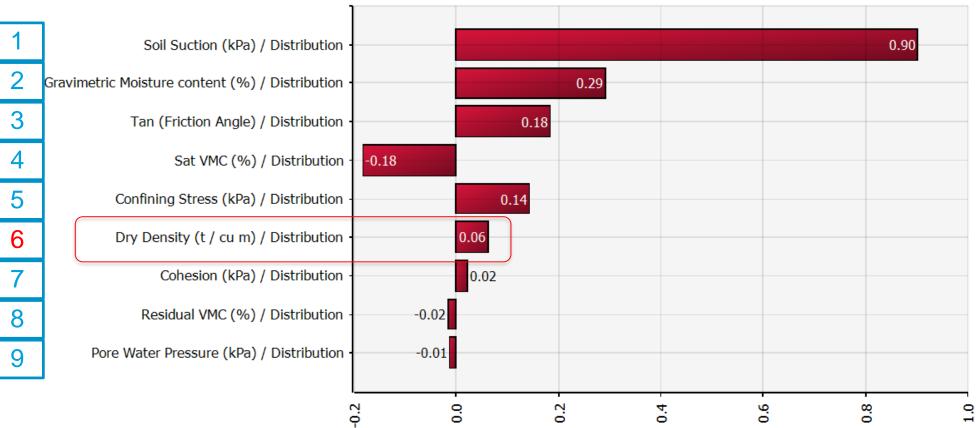

where θ = volumetric moisture content and θ_s = volumetric water content at saturation θ_r = residual volumetric water content



Monte Carlo Simulation of all variables

 $\tau = c' + (\sigma - u_w) \tan \emptyset' + (u_a - u_w) \left[\tan \emptyset' \left(\frac{\theta - \theta_r}{\theta_s - \theta_r} \right) \right]$

Not practical to measure these parameters



Shear Strength (T) (Sim#1)

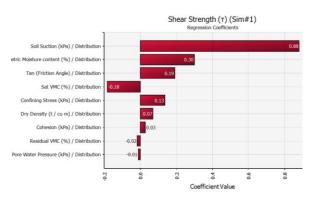
8


Spearman Rank of all variables

 $\tau = c' + (\sigma - u_w) \tan \emptyset' + (u_a - u_w) \left[\tan \emptyset' \left(\frac{\theta - \theta_r}{\theta_s - \theta_r} \right) \right]$

Shear Strength (T) (Sim#1)

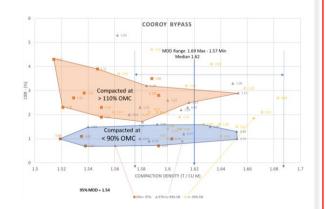
Correlation Coefficients (Spearman Rank)



Summary

We emphasise density in QC but it is not the primary parameter

69


73

- Unsaturated soil models
- 9 Variables
- MC effect is No. 3
- DD effect is No. 6

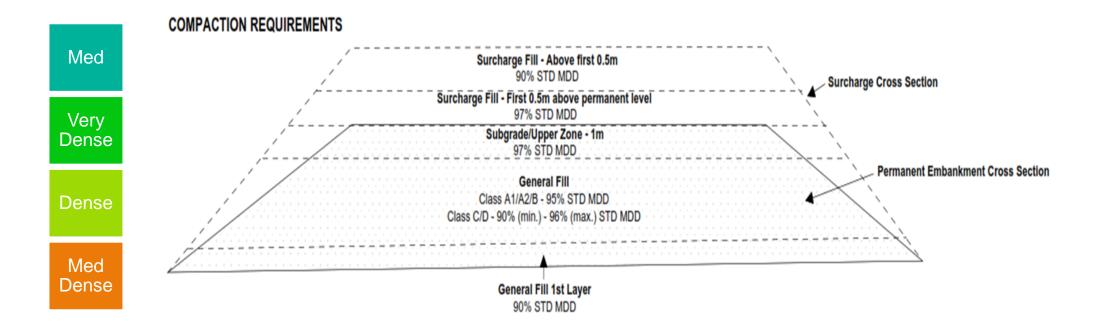
Dendrogram
 Clustering
 analysis

- 20 Test variables
- CBR affected by MC more than DR

- Lab
 Correlations
- CBR affected by
 MC more than DR

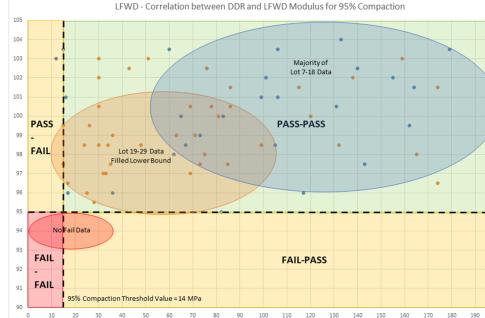
- Field Testing
- Modulus has low correlation with DR
- Instruments well correlated to each other

Total unit weight = Total density (ρ_b) = W / V Dry unit weight = Dry density = W_s / V = ρ_b / (1 + w)



2019 Test site Lessons Learnt

Compaction Levels


Test QA – Thresholds Related to RDD

Available data used to develop correlations during 'Live' Construction Project

Based on 72 Tests using Prima 100 LWD

Threshold		Fail / Fail	Pass / Pass	Density = Fail	Density = Pass	Correct Assessment	RDD + LFWD Disagree	
RDD	LFWD	Fall / Fall	Pd55 / Pd55	LFWD = Pass	LFWD = Fail	(RDD + LFWD Agree)	(1 Test Passes / 1 Test Fails)	
96%	15 MPa	0	69	2	1	96%	4%	
98%	30 MPa	5	50	11	6	77%	22%	
100%	60 MPa	16	30	18	8	64%	36%	
103%	160 MPa	54	1	9	8	76%	24%	

200

FSG OFF YOUR NATIONAL TRANSP

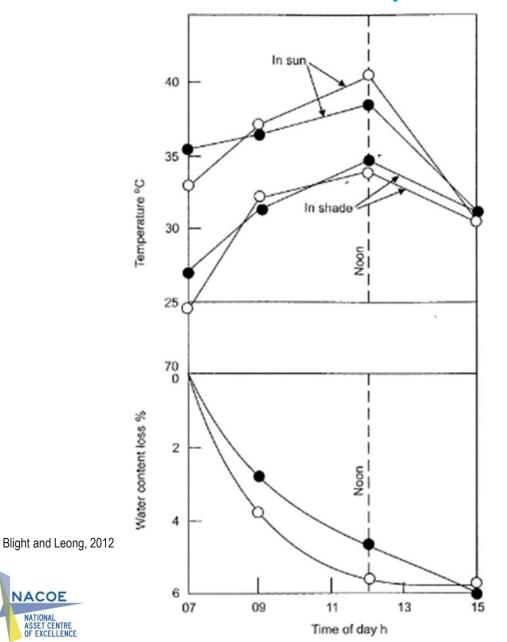
A density pass \rightarrow but fail LFWD \rightarrow disagreement

Variation in Material Moisture content

Spot check with NDG testing may not be able to effectively identify the "soft" spots such as wet zones

Test area selected for NDG testing surrounded by relatively higher moisture content

Lot 24 - LFWD Tests


- ✤ Lot 24 LFWD "failing" ≠ assumed density "passing" results
- ✤ Recheck of values: allow to dry back → increase of modulus values. Is this allowed? Density had already passed
- ✤ < 12 hr dry back : Median 125% of Dry Value: 163% of quartile</p>
- ✤ 24 hr dry back : 3.5 5.1 increase in modulus

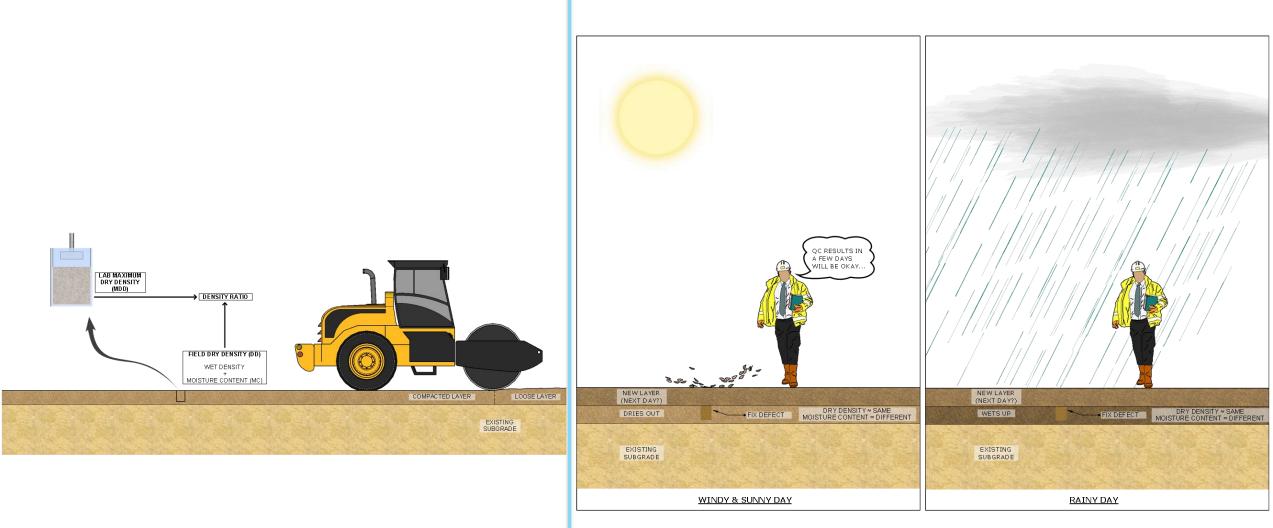
	No. of Tests	LFWD Modulus (MPa) @						
Testing Period		50kPa	100kPa	50kPa	100kPa	50kPa	100kPa	
		Median		Quartile		Ratio Change		
				Qui		Median /	Quartile	
Shortly after fill compaction	4	46.5	23.0	28.4	15.6	Reference	e Value	
Next Day – Dry backed	4	58.0	37.4	18.2	16.3	1.25 / 0.6	1.6 / 1.0	
Further Dry Back	10	167.0	116.5	99.4	70.2	3.6 / 3.5	5.1 / 4.5	

Water content evaporation loss

NACOE

NATIONAL ASSET CENTRE OF EXCELLENCE

Water content losses through the entire thickness from


- 2 X 200mm thick, loose, -
- **Uncompacted soil layers**
- Arid conditions

5% loss in 5 hrs whether in shade or sun Varies on wind and ambient temperature

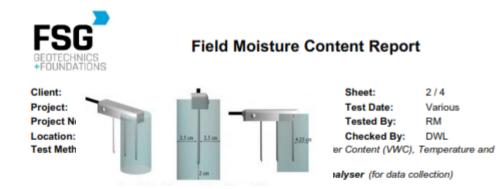
Water content is not a constant

Sun, wind or rain after density test

Lot 21 - LFWD Tests

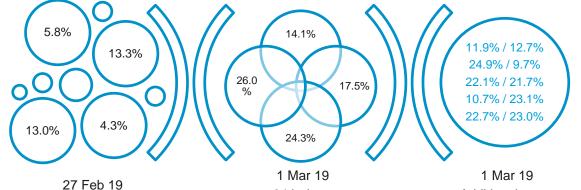
- Density testing was carried out shortly after final layer compaction occurred.
- A period of rain then occurred shortly after testing
- Tests 2 days after compaction shows significant changes due to rainfall wetness
- Density testing was business as usual i.e. proceeding without explicitly acknowledging or taking action for changing conditions

		LFWD Modulus (MPa) @					
Testing Period	No. of Tests	50kPa	100kPa	50kPa	100kPa	50kPa	100kPa
	TESIS	Median		Quartile		Ratio Change	
						Median /	Quartile
Dry – shortly after fill compaction	4	116.9	113.0	64.1	72.8	Referen	ce Value
Rain fell – adjacent to previous tests	4	91.1	98.3	59.6	67.4	0.78/0.93	0.87 / 0.93



Lot 21 – Field Volumetric Moisture Content

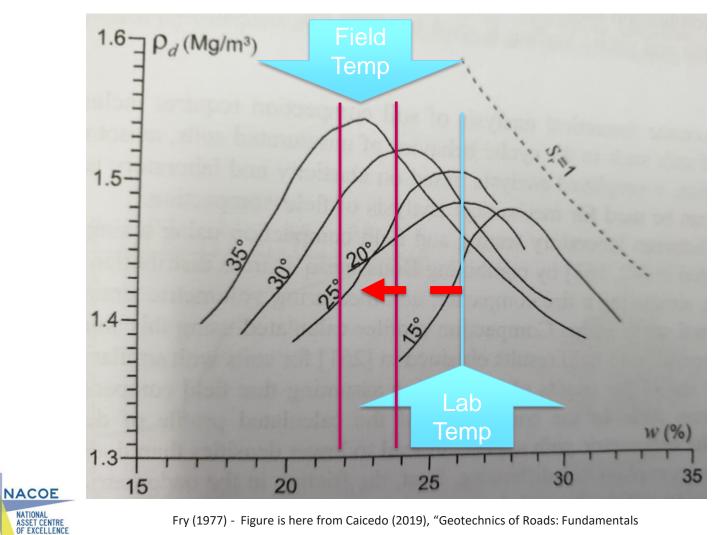
ProCheck TEROS-12


- A passing density should not mean that subsequent layers * can be placed, especially following rainfall.
- VMC X 2 following rainfall *
- 88% X Initial Modulus values **
- PANDA little change deepens by 0.03m *

	Test Details		Insitu Testing of Soil Condition (at time of test)				
Site	Date of Test	Sub-site ID (Test Location)	Field Volumetric Water Content (m ³ /m ³ , %)	Soil Temperature (^o C)	Bulk Electrical Conductivity (EC, dS/m)		
	27/02/2019	21-2	13.27%	33.4	0.015		
	1/03/2019	21-2 (+24hrs)	17.50%	30.5	0.035		
	27/02/2019	21-3	13.01%	35.3	0.023		
	1/03/2019	21-3 (+24hrs)	24.26%	30.6	0.081		
	27/02/2019	21-4	4.25%	36.7	0.010		
	1/03/2019	21-4 (+24hrs)	25.95%	31.5	0.037		
	1/03/2019	21-5	11.94%	33.1	0.019		
Site 21		21-6	12.71%	32.6	0.026		
(Continued)		21-7	24.87%	32.4	0.039		
		21-8	9.70%	32.2	0.018		
		21-9	22.08%	32.0	0.046		
		21-10	21.68%	31.9	0.040		
		21-11	10.66%	31.6	0.012		
		21-12	23.12%	31.7	0.038		
		21-13	22.69%	31.6	0.038		
		21-14	23.01%	30.3	0.063		
Site 21	27/02/2019	21-1	5.82%	33.5	0.007		
Site 21	1/03/2019	21-1 (+24hrs)	14.12%	30.5	0.030		

	- Chic	Date of fest	(Test Location)	(m ³ /m ³ , %)	
		27/02/2019	21-2	13.27%	
11.9% / 12.7%		1/03/2019	21-2 (+24hrs)	17.50%	
24.9% / 9.7%		27/02/2019	21-3	13.01%	
22.1% / 21.7%		1/03/2019	21-3 (+24hrs)	24.26%	
10.7% / 23.1%		27/02/2019	21-4	4.25%	
22.7% / 23.0%		1/03/2019	21-4 (+24hrs)	25.95%	
22.1707 20.070			21-5	11.94%	
	Site 21		21-6	12.71%	
	(Continued)		21-7	24.87%	
1 Mar 19			21-8	9.70%	
		1/03/2019	21-9	22.08%	
Additional tests		1/03/2019	21-10	21.68%	
			21-11	10.66%	
			21-12	23.12%	
			21-13	22.69%	
			21-14	23.01%	

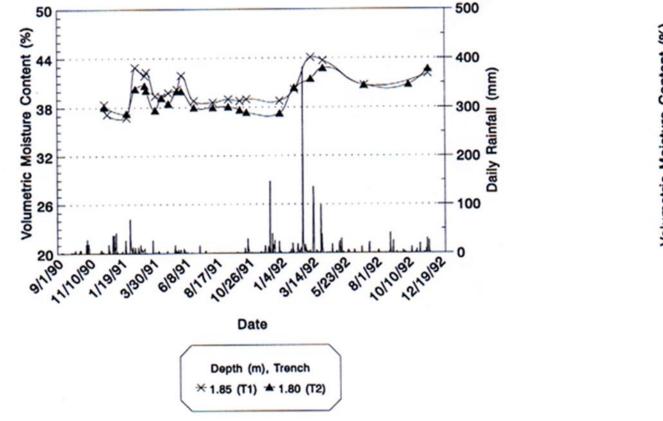
24 hr later

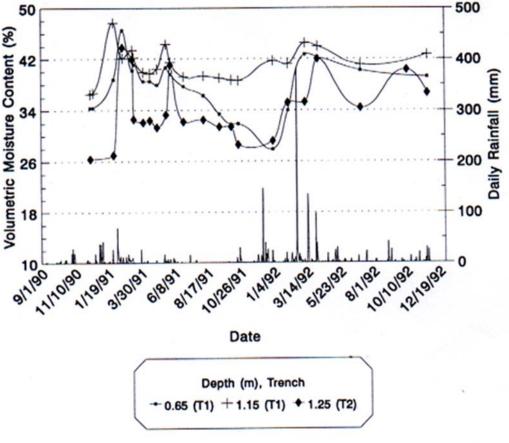

Median = $9.9\% \rightarrow 20.9\% / 21.9\%$

Effect of Temperature on Proctor compaction curves

Soil Temperature varied by up to 6.2 °C - ambient would be more

~ 10 °C warmer than lab. \rightarrow Not usually considered

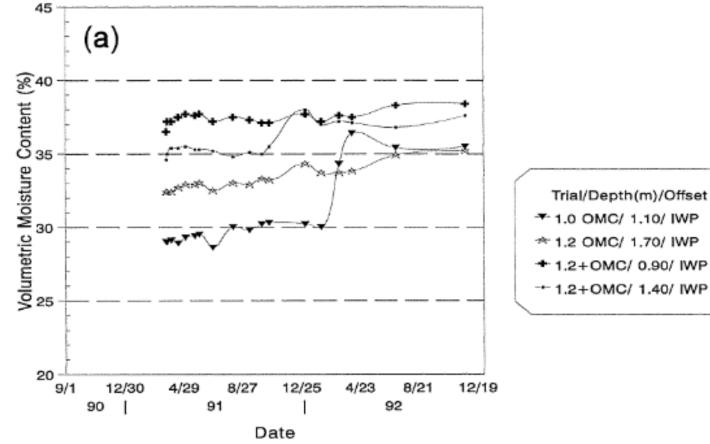

	Test Details		Insitu Testing of Soil Condition at time of test)				
Site	Date of Test	Sub-site ID (Test Location)	Field Volumetric Water Content (m ³ /m ³ , %)	Soil Temperature (⁰ C)	Bulk Electrical Conductivity (EC, dS/m)		
	27/02/2019	21-2	13.27%	33.4	0.015		
	1/03/2019	21-2 (+24hrs)	17.50%	30.5	0.035		
	27/02/2019	21-3	13.01%	35.3	0.023		
	1/03/2019	21-3 (+24hrs)	24.26%	30.6	0.081		
	27/02/2019	21-4	4.25%	36.7	0.010		
	1/03/2019	21-4 (+24hrs)	25.95%	31.5	0.037		
	1/03/2019	21-5	11.94%	33.1	0.019		
Site 21		21-6	12.71%	32.6	0.026		
(Continued)		21-7	24.87%	32.4	0.039		
		21-8	9.70%	32.2	0.018		
		21-9	22.08%	32.0	0.046		
		21-10	21.68%	31.9	0.040		
		21-11	10.66%	31.6	0.012		
		21-12	23.12%	31.7	0.038		
		21-13	22.69%	31.6	0.038		
		21-14	23.01%	30.3	0.063		
Site 21	27/02/2019	21-1	5.82%	33.5	0.007		
one 21	1/03/2019	21-1 (+24hrs)	14.12%	30.5	0.030		



Fry (1977) - Figure is here from Caicedo (2019), "Geotechnics of Roads: Fundamentals

Moisture measurements in active + (assumed) stable zone

Below existing (30yr) road at Cooroy (1700mm annual rainfall)



Monitoring of trial embankments

Constructed at various moisture contents (Cooroy – CH clays)

Moisture Content at construction is not the long term moisture content

Equilibrium Moisture Content (EMC) determines long term strength NOT the OMC at construction which is the short term construction condition

Test site with 100% passing 75mm

Sampling – Test site in practice

Excavations not vertically sided

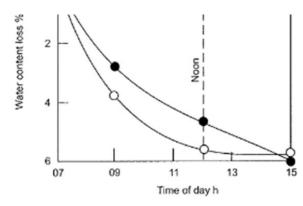
Shallow excavation samples crushed material at top

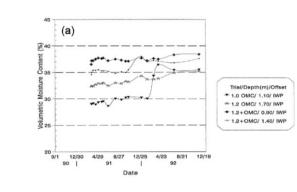
Discarding boulders (> 200mm) from samples

Sampling – Ideal hole

- ✓ Sampling requires that all material from a vertical-sided hole (excavated to the depth that the NDG source rod was placed) must be recovered for laboratory testing.
- ✓ The hole permitted to be enlarged in plan, but no deeper than the depth of test, to obtain sufficient material for moisture content and laboratory compaction testing.
- ✓ It is extremely important to take the sample from the full depth of the test, this captures any moisture gradient in the layer being tested. Failure to take the sample properly can lead to very erroneous results.

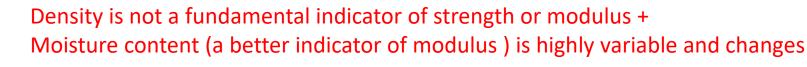
RMS: Technical Guide | L-G-002 | February 2015 Field density testing by using a nuclear density gauge



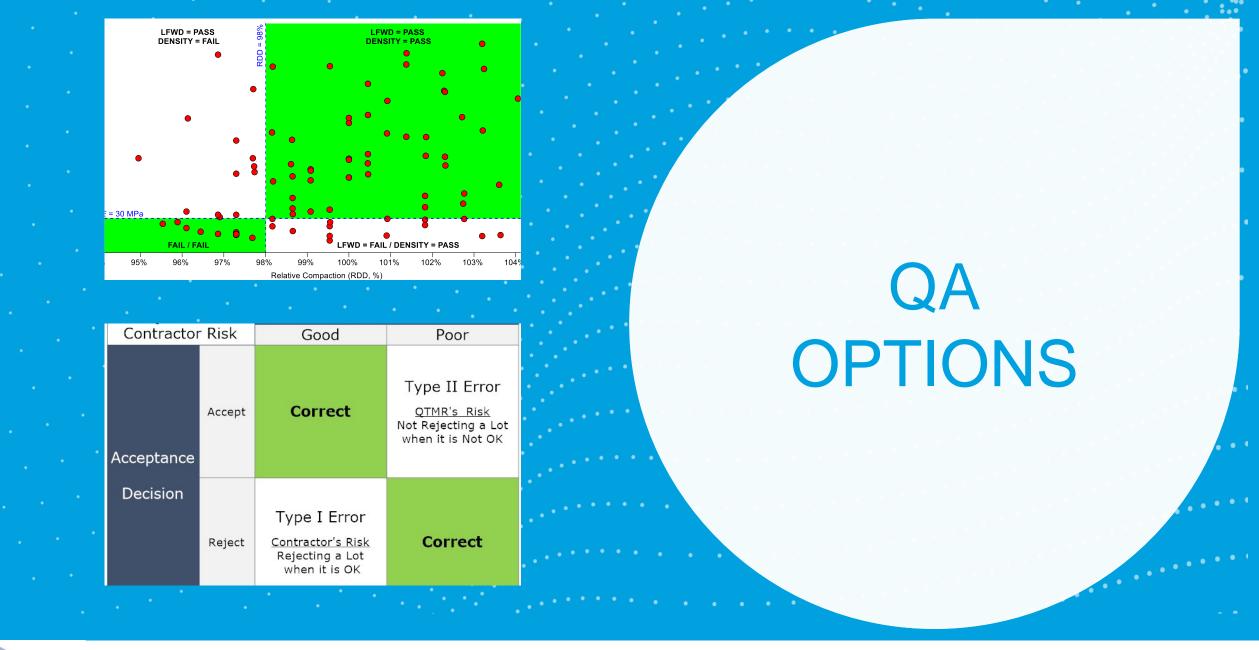


Summary

Moisture Content + Construction

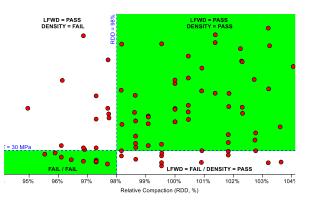

- Water content
 loss
- Varies significantly during placement
- Equilibrium Moisture Condition
- EMC Long term
- OMC short term

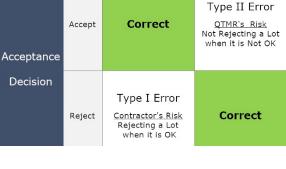
- Field density
 Sampling
- Often non representative
- Gradings + oversize + depth


Assessment (RDD + LFWD Agree)	(1 Test Passes / 1 Tes Fails)
96%	4%
77%	22%
64%	36%
76%	24%

- Field Testing
- 1/3 to ¼
 disagreement
 between high
 density and
 modulus controls
- OK at lower density values

37

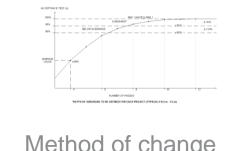




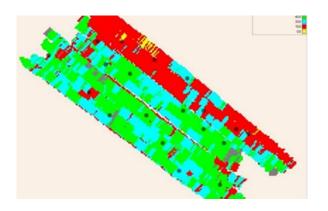
Specifications options

Specify Values?

- Correlation Approach linked to Standard Density approach
- Project and material specific. Parallel Testing
- Likely to be most variable. Many "good" values fail and "bad" values pass
- Skews QA approach



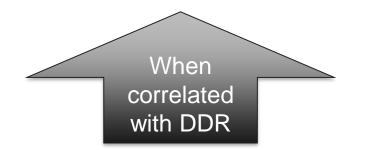
Good


Poor

Contractor Risk

- Method Of matching PDFs linked to Standard Density approach
 - Project and material specific. Parallel Testing
 - Uses 10% QA acceptance decision

- Method of change reduction
- Not linked to
 Standard Density
 approach
- Parallel testing not mandatory
- Uses QA acceptance decision


- Intelligent Compaction verification
- NCHRP 676 Options
- Various approaches linked with parallel non density testing

Typical Specifications – Values

Issues with correlations to DDR

DDR	LFWD _{100 kPa}	Correct Assessment (RDD + LFWD Agree)	RDD + LFWD Disagree (1 Test Passes / 1 Test Fails)
96%	15 MPa	96%	4%
98%	30 MPa	77%	22%
100%	60 MPa	64%	36%
103%	160 MPa	76%	24%

In situ E correlated to 95% Density ratio - Values

Varies with each material

Fill Material Origin	Plate Load Test (PLT) E _{v2} (MPa)	Light Falling Weight Deflectometer (LFWD) E _{LFWD-100kPa} (MPa)
Sandstone: 70% Gravel size; 10% fines	60	45
Interbedded Siltstone / Sandstone 70% Gravel size; 11% fines	35	25
Basalt 65% Gravel size; 12% fines	50	30

Various acceptance LFWD for Base Course materials & Layers

TENTATIVE EQUIVALENCES BETWEEN PERCENT COMPACTION AND COMPOSITE MODULUS AT OPTIMUM WATER CONTENT FOR BASE AND SUBBASE COURSE AGGREGATE

Relative Compaction Based on AASHTO T180 (%)	Equivalent LWD Composite Modulus (MPa) at Optimum Water Content
90	92
95	115
98	130
100	139

FACTOR TO CORRECT COMPOSITE MODULUS MEASURED AT FIELD WATER CONTENT TO EQUIVALENT VALUE AT OPTIMUM WATER CONTENT

Water Content Relative to Optimum		Correction Factor to Be Added to Composite Modulus (MPa) Measured at Field Moisture Content
-4%		-31
Dry of OMC	-3%	-23
	-2%	-15
	-1%	-8
At OMC		0
	+1%	8
Wet of OMC	+2%	15
	+3%	23
	+4%	31

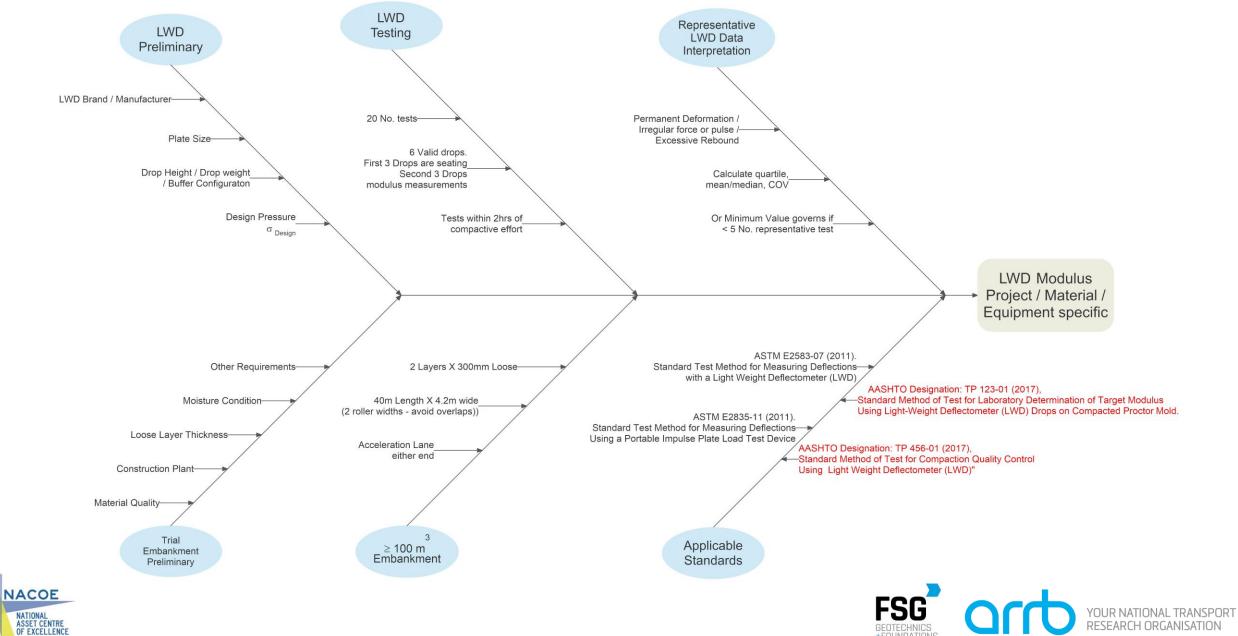
Steinart et al. (2005)

Laying and compaction specification for road construction in Germany

Soil layers	Density (Standard Proctor)	Bearing capacity (load bearing test, EV2)	Eveness (4 m straight edge)
Subbase	100 - 103 % *	100 - 150 MN/m² *	20 mm
Capping layer	100 - 103 % *	100 - 120 MN/m² *	40 mm
Formation	97 - 100 % *	45 - 80 MN/m² *	60 mm

 * depending on road classification and road design $^{\mathrm{Fr}}$

From BOMAG



LFWD PROCEDURE QA

Key Elements in LWD specification

1. Define Initial Inputs – LWD Configuration

What **design pressure** is to be verified by onsite testing?

 σ_{Design}

What **LWD Brand** is proposed to be utilised for onsite testing?

LWD Type

Is the LWD Configuration capable of achieving the σ_{Design} pressure? (and +/- 20% of σ_{Design})

What equipment will be utilised to assess the Insitu Moisture Condition at time of LWD Testing? De Plat Buffer

Defined LWD Variables –

Plate Diameter, Drop Weight, Buffer Arrangement & Drop Height

Defined Insitu Moisture Content Assessment Technique

2. Define Initial Inputs – Earthworks Variables

What **Material** is to be used as the source for Earthworks?

What Loose Layer Thickness is to

be utilised during Earthworks?

Material Type and Quality

Lift Thickness

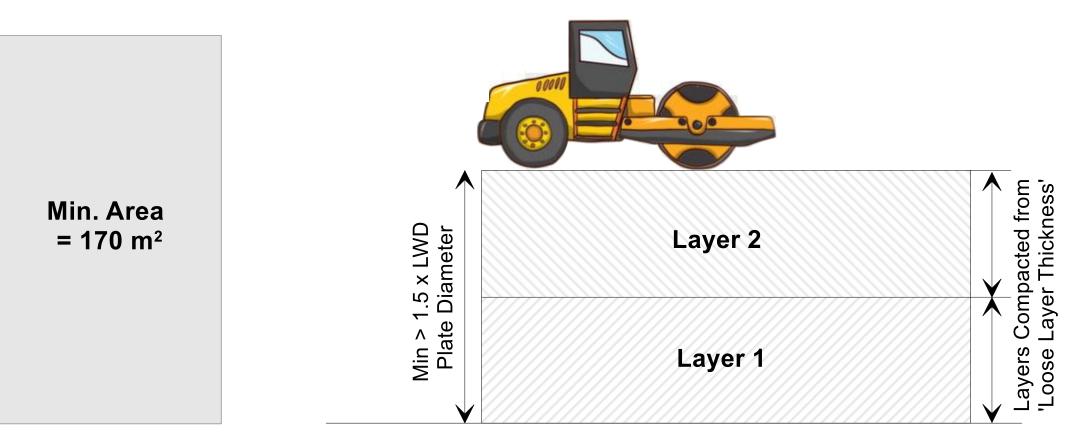
What **Compaction Equipment & Methodology** is to be utilised to achieve effective compaction

What Moisture Conditioning will

occur prior / during completion of

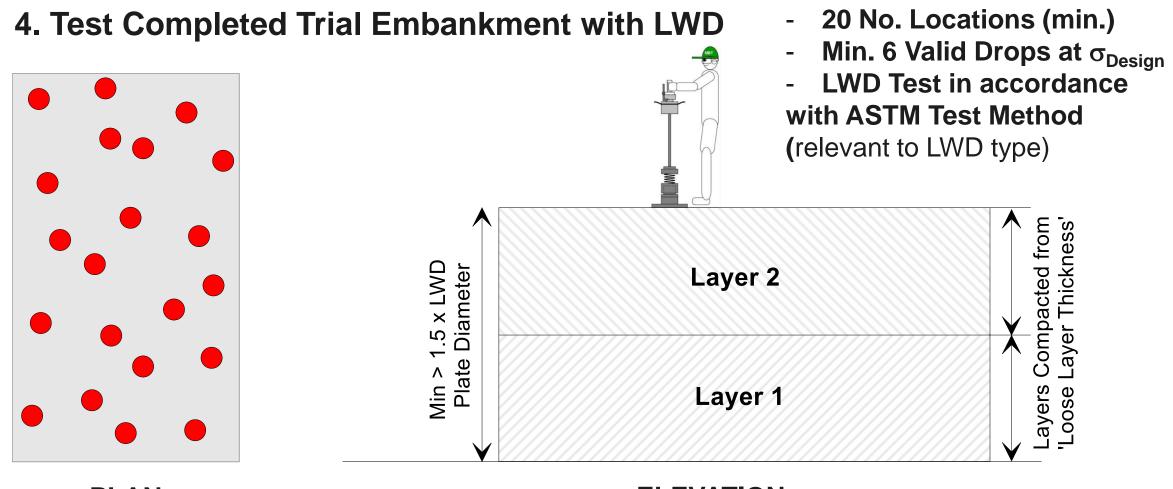
compaction?

Compaction Technique – Equipment & Method



Insitu Moisture Condition (at time of LWD Testing)

3. Construct Trial Embankment


PLAN

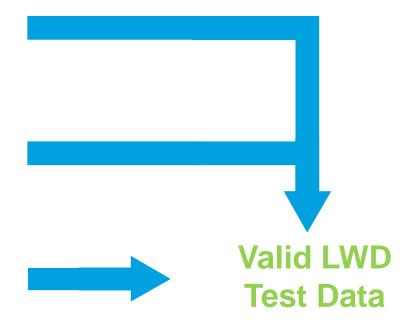
NACOE

NATIONAL ASSET CENTRE OF EXCELLENCE

ELEVATION

PLAN

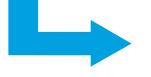
ELEVATION

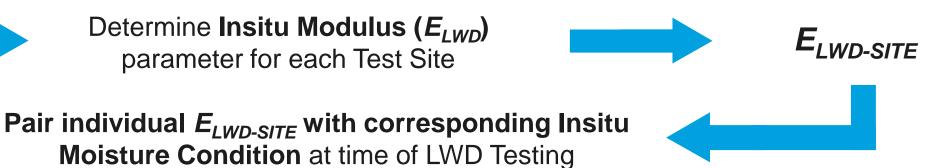

5. Inspect and Standardize LWD Dataset

Identify and Remove all 'Seating' Test Records

Identify and Remove any Test Records that demonstrate irregular Ioad / deformation shape

Identify and remove all Test Records that departed from σ_{Design} pressure


Review all Test Records for demonstration of permanent deformation under σ_{Design} pressure



6. Assess Insitu Modulus-Moisture Relationship (if Present)

NACOE

Determine Insitu Modulus (E_{LWD}) parameter for each Test Site

Evaluate paired [$E_{LWD-SITE}$, Moisture Content] dataset for presence of modulus-moisture relationship

E_{IWD} Parameter is **NOT Moisture Dependent**

 E_{IWD} Parameter **IS Moisture Dependent** Define Function of E_{I WD} Moisture Condition Relationship

Moisture dependent

% Fines : Passing 0.075mm sieve

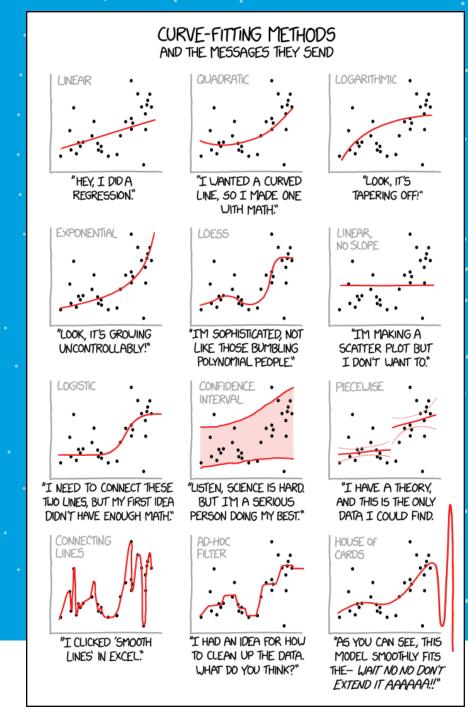
Material Type	Typical Coefficient of Variation (CoV) of E _{LWD-SITE}
GRAVEL dominated materials	10 – 20 %
SAND dominated materials	15 – 35 %
FINES dominated materials	30 – 60 %

7. Define E_{LWD} Acceptance Thresholds (for Production Earthworks QA Testing) A. For Materials where E_{LWD} IS NOT Moisture Dependent

Criteria #1 – All E_{LWD} results for a single earthworks Lot must exceed the minimum $E_{LWD-SITE}$ value (*i.e.* Assessment that minimum insitu modulus parameter has been achieved at all locations)

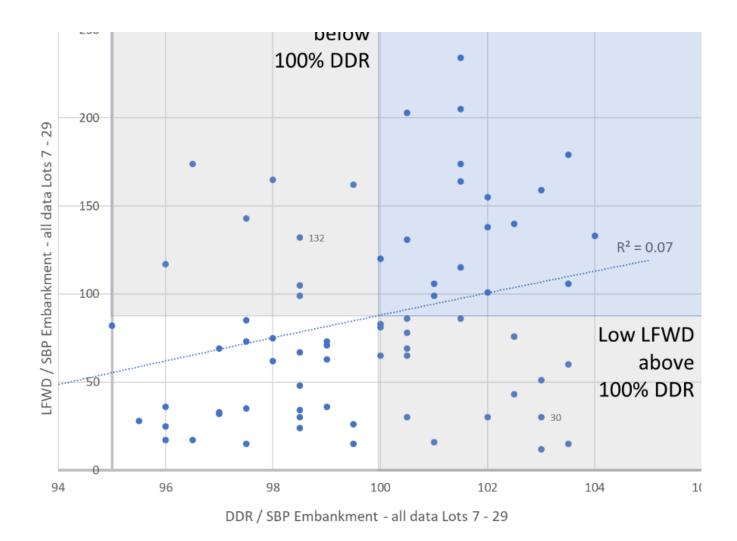
Criteria #2 – Mean E_{LWD} within a single earthworks Lot must exceed 80% of the mean of the $E_{LWD-SITE}$ dataset (i.e. Assessment that typical insitu modulus parameter has been achieved across a Lot)

Criteria #3 – Lower Characteristic E_{LWD} within a single earthworks Lot must not fall below the Lower Characteristic of the $E_{LWD-SITE}$ dataset (i.e. Assessment that variability of insitu modulus parameter does not exceed expectations)


7. Define E_{LWD} Acceptance Thresholds (for Production Earthworks QA Testing) B. For Materials where E_{LWD} S Moisture Dependent

Criteria #4 – Measured E_{LWD} must exceed [$E_{LWD-SITE}$ – Average of Function Residuals] when E_{LWD} & $E_{LWD-SITE}$ are determined at corresponding Insitu Moisture Contents (*i.e.* Assessment that observed insitu modulus parameter achieves typical value)

Criteria #5 – Measured E_{LWD} must remain above the Lower Bound 95th Confidence Interval Value for defined $E_{LWD-SITE}$ – Insitu Moisture Content relationship (*i.e.* Assessment that observed insitu modulus parameter exceeds minimum requirement)

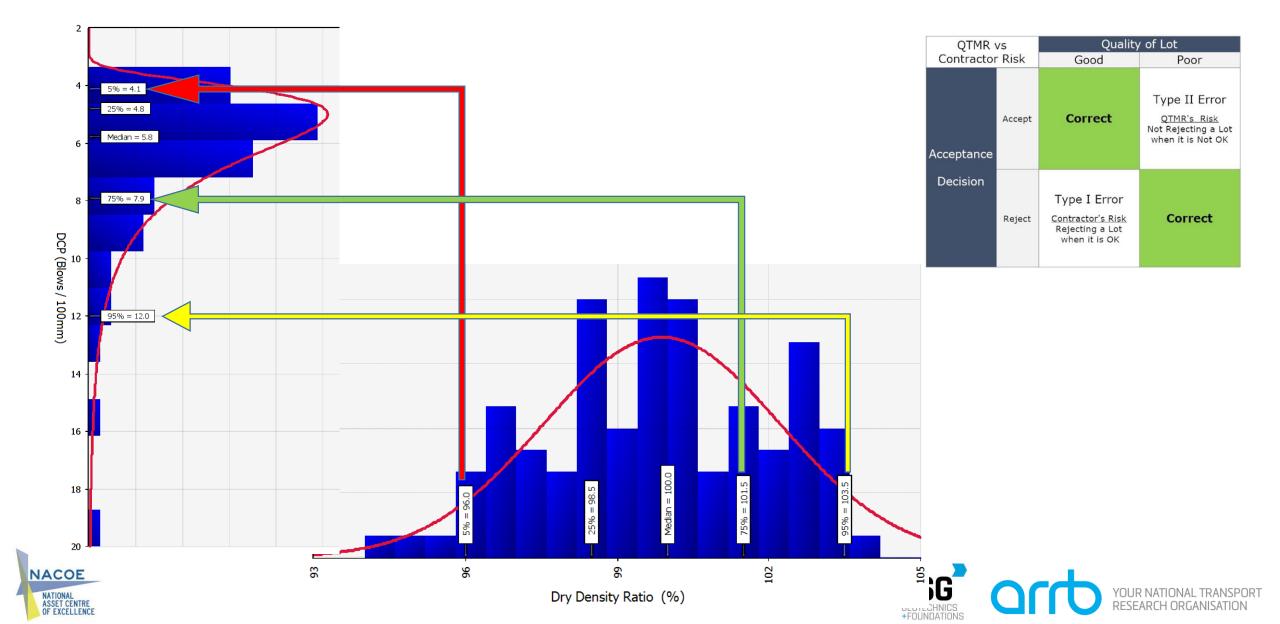


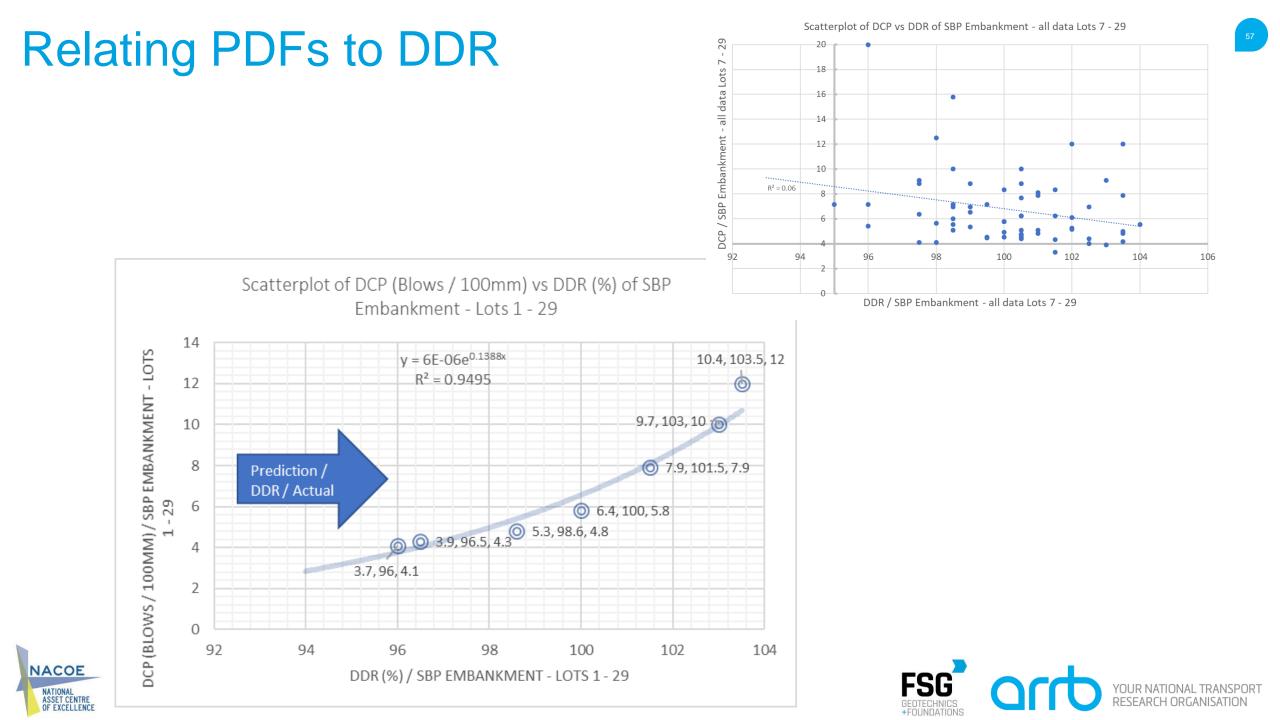
Correlation which avoids curve fitting Method of Matching PDFs

FSG YOUR NATIONAL TRANSPO

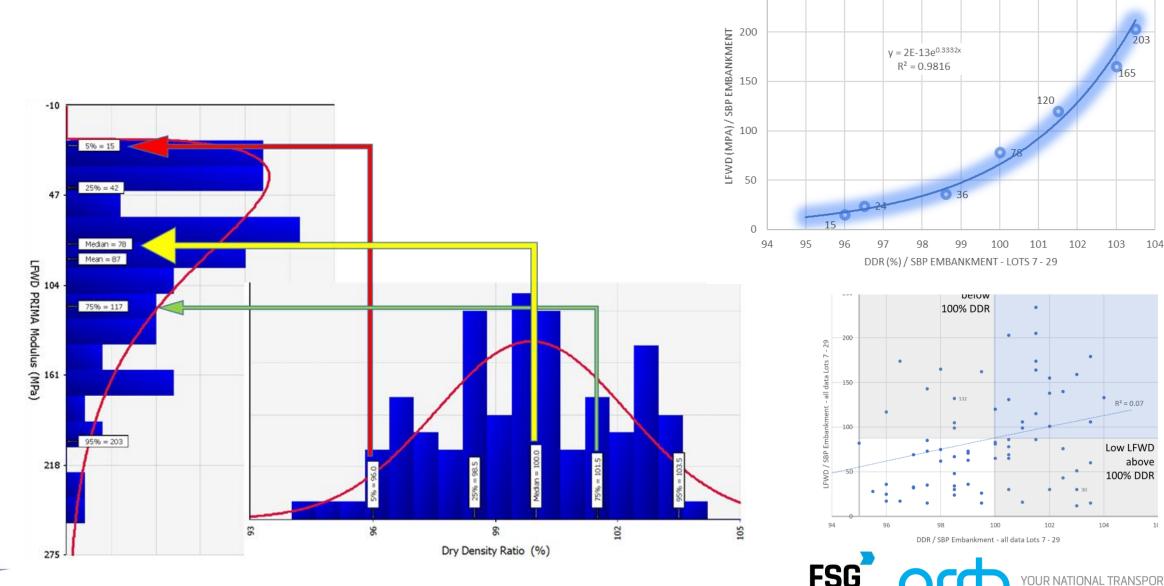
Paired matching of DR and LFWD (Prima) tests

NACOE


NATIONAL ASSET CENTRE OF EXCELLENCE High Modulus values (> 100 MPa) can "fail" a 100% DR tests

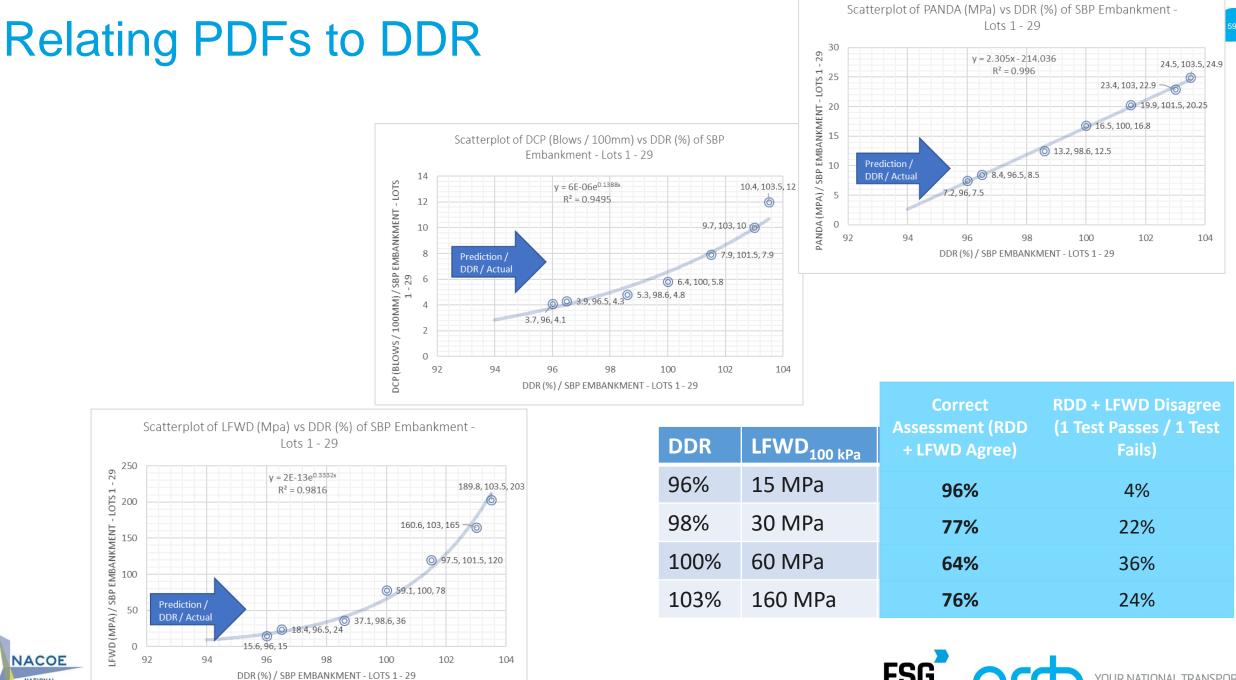

And

values below 30 MPa can "pass" a DR criterion

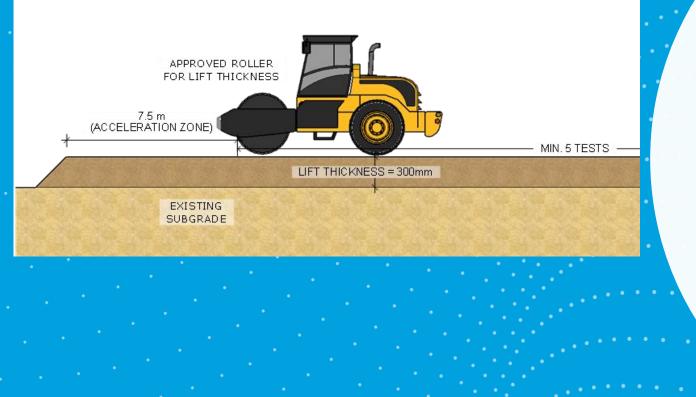


Method of Matching PDFs

Matching the Dry Density Ratio and LFWD PDFs


250

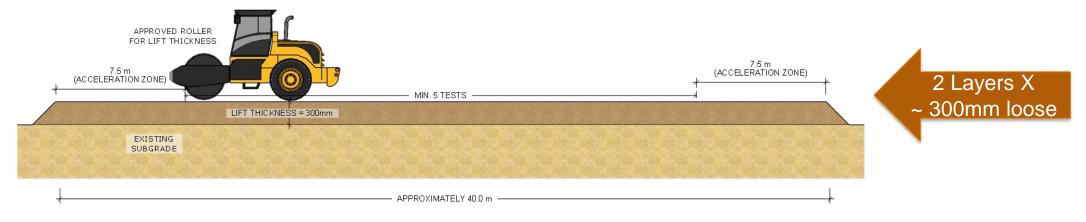
+FOUNDATIONS

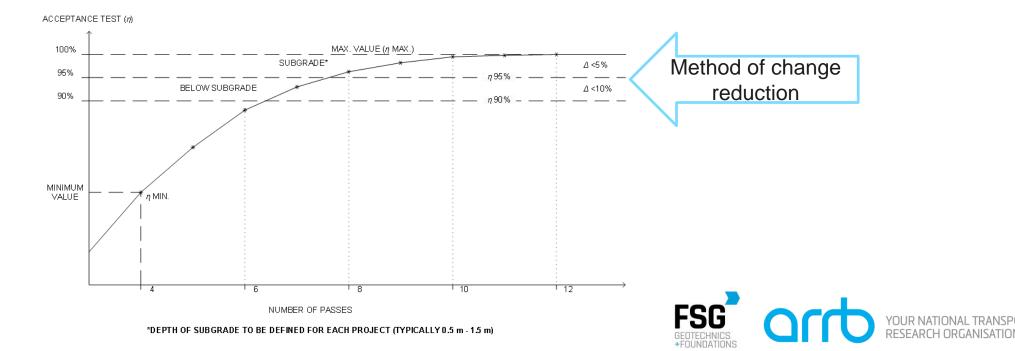

58

RESEARCH ORGANISATION

NATIONAL ASSET CENTRE OF EXCELLENCE

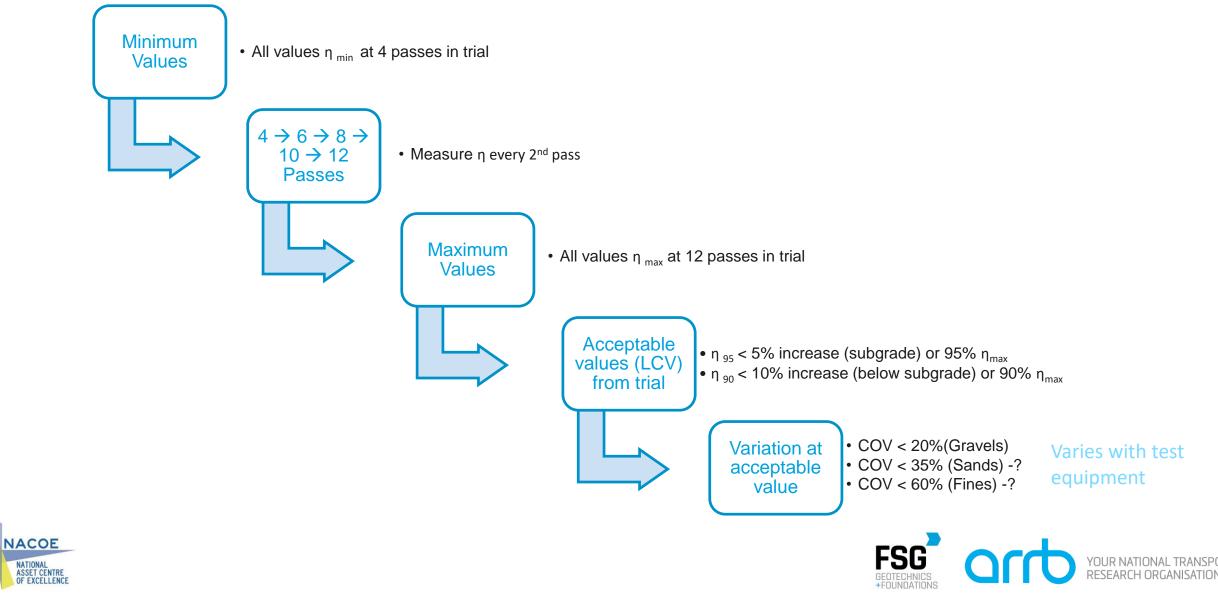
YOUR NATIONAL TRANSPOR RESEARCH ORGANISATION

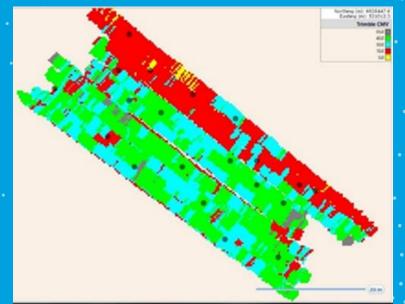

% Maximum **Target Value** Method of **Change Reduction**



% Maximum Target values

Minimum Area = 40 m length X 4.2m wide: No. tests = 2 X 5 = 10 Min / Layer : 2 Layers





QA - Acceptance Criteria

10 Min Tests (Ideally 20 No.)

Intelligent compaction QA

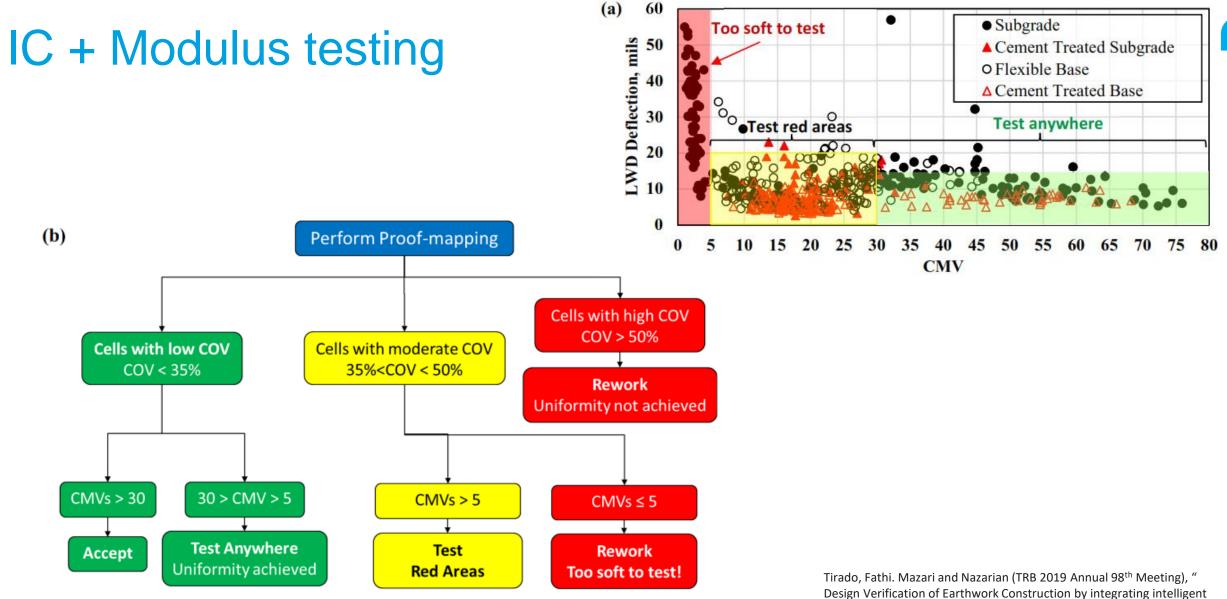


FIGURE 2 (a) Relationship between CMV and deflections measured from LWD mass drops for all sites and (b) proposed protocol for project acceptance.

NACOE

NATIONAL ASSET CENTRE OF EXCELLENCE

compaction technology and modulus based testing

CHEOLOGISTS FOUND THESE ARTIFACTS

"You cannot have a camera without film"

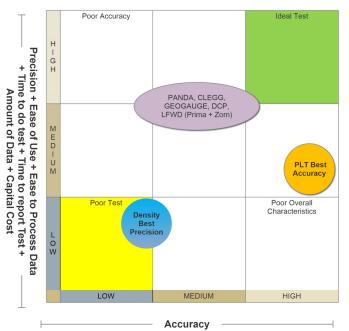
"You cannot have a quality test without a density measurement"

S **Density Ratio** the end game ?

Summary and conclusions

3 most common tests are PLTs, Density and DCPs \rightarrow do not correlate well with each other.

- ✓ Density Ratio testing is the most precise test. However, poor indicator of strength or modulus, once the pass compaction has been achieved
- ✓ PLT is very accurate, but low precision


NACOE

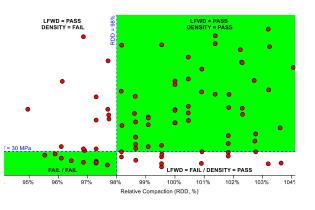
ASSET CENTRE

✓ DCPs has a low precision but has other characteristics (ease of use and depth profiling) which make this test attractive

No clear leader for the combined 8 criteria used

- ✓ Direct or meaningful correlations should be project + material specific
- $\checkmark\,$ Many Alternative tests are more related to Moisture content rather than density
- ✓ Moisture content changes likely to occur and affect modulus values
- \checkmark Correlating back to density is unlikely to advance the use of alternative testing

SG JTECHNICS UNDATIONS STECHNICS UNDATIONS


Specifications options

Target Value cannot be universal

Contractor Risk

Acceptance Decision Accept

Reject

- Correlation Approach linked to Standard Density approach
- Project and material specific. Parallel Testing
- Likely to be most variable. Many "good" values fail and "bad" values pass
- Skews QA approach

Good

Correct

Type I Error

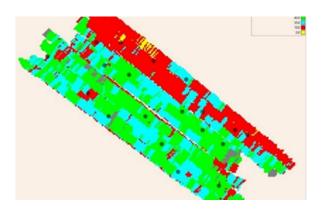
Contractor's Risk

Rejecting a Lot

when it is OK

Poor

Type II Error


<u>QTMR's Risk</u> Not Rejecting a Lot when it is Not OK

Correct

- Project and material specific. Parallel Testing
- Uses 10% QA acceptance decision

- Method of change reduction
- Not linked to Standard Density approach
- Parallel testing not mandatory
- Uses QA acceptance
 decision

- Intelligent Compaction verification
- NCHRP 676 Options
- LFWD parallel testing

Thank you for your participation today.

For further information on the topic, please contact:

Dr Jeffrey Lee Dr Burt Look

jeffrey.lee@arrb.com.au blook@fsg-geotechnics.com.au

Website: https://www.nacoe.com.au

