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Rooms 1 & 2

2



Modelling Spatial Variability

Mathematical techniques focus on stochastic methods:

• Regression analysis

• Random field theory

• Geostatistics

• Fractal theory

• Regression analysis is too simplistic;

• Fractal theory is useful but no modelling tools are 
available. 
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Random Field Theory (RFT)

• 3D extension of time series analysis.

• Applied to geotechnical engineering by Prof. Eric 
VanMarcke (MIT, Princeton) in late 1970s, early 1980s.

Spatial variability is expressed by 3 parameters:

1. Mean (average);

2. Variance, Standard deviation, Coefficient of variation;

3. Scale of fluctuation (uses autocorrelation function).
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Scale of Fluctuation

• The scale of fluctuation, SOF, is a measure of the 
distance over which soil properties are highly correlated.

• Small values of SOF imply rapid fluctuations about the 
mean.
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Scale of Fluctuation

• The scale of fluctuation, SOF, is a measure of the 
distance over which soil properties are highly correlated.

• Large values suggest a slowly varying property, with 
respect to the mean.
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Scale of Fluctuation – 2D
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Geostatistics

• Geostatistics was developed to assist in the estimation of 
changes in ore grade within a mine and is largely a result 
of the work of D. Krige and G. Matheron in the early 
1960s.

• Geostatistics has been applied to many disciplines 
including: groundwater hydrology; hydrogeology; 
surface hydrology; earthquake engineering and 
seismology; pollution control; geochemical exploration; 
and geotechnical engineering. 
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Geostatistics

• Geostatistics can be applied to any natural phenomena
that are spatially or temporally associated.

• Geostatistics is based on the regionalised variable, that 
is, one that can be represented by random functions, 
rather than independent random variables (classical 
approach).

• Makes use of the semivariogram.
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Geostatistics – Kriging
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RFT and Geostatistics – Simulation
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Artificial Neural Networks (ANNs)
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Artificial Neural Networks (ANNs)

13

• ANN developed using data.

• Weights between nodes are 
optimised with successive 
iterations until the error is 
minimised.

• Aim: To develop accurate 
predictions of the output 
variable(s) from the input 
variables.
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Foti & Passeri

Reliability of soil porosity estimation from seismic 
wave velocities 

S. Foti & F. Passeri

Politecnico di Torino, Italy

Aim:

• To investigate the reliability of porosity estimation from 
shear wave velocities using error propagation theory.
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Foti & Passeri
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• Porosity, n, is a function of density of the soil solids, rs, 
and pore water, rw, bulk modulus of pore water, Kw, 
dilatational and shear wave velocities, Vp and Vs, and the 
Poisson’s ratio of the soil skeleton, νsk.



Foti & Passeri

• Consider: n = f (ρs, ρw, Kw, Vp = d/tp, Vs = d/ts, νsk), 
where d is the travel distance and t is the travel time.

• Assumed that each variable is normally and randomly
distributed and independent.
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Foti & Passeri – Case Studies

Presented two case studies:

• Site of Zelazny Most tailings 
dam (Poland);

• A site in the Italian town of 
Mirandola.
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Foti & Passeri – Conclusions

• In particular, for cross-hole tests, the distance between 
boreholes is significant.

• Travel times have a minor influence. 

• The effect of P-waves is significant. 

• The effects of the velocity of compressional waves in 
water and the Poisson’s ratio of the soil skeleton also 
affect the estimate of n.
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Huang et al.

Enhanced data interpretation: combining in-situ 
test data by Bayesian updating

J. Huang, R. Kelly & S.W. Sloan

ARC Centre of Excellence for Geotechnical Science and 
Engineering, The University of Newcastle, Australia

SMEC, Brisbane, Australia

Aim:

• To apply Bayesian updating to include laboratory testing 
and associated uncertainties to enhance the accuracy of 
seismic measurements.
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Huang et al.

• Involves measurement of 
shear wave velocity, Vs, using 
the seismic DMT and 
supplemented with laboratory 
determined preconsolidation
pressure data from constant 
rate of strain oedometer tests.
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Huang et al.

• Empirical relationships
between the preconsolidation
pressure and shear wave 
velocity are first derived from 
the two sets of data (Vs and 
s’v).

• Prior distribution of pre-
consolidation pressures is 
obtained using a linear trend
and kriging.
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• The uncertainties of pre-
consolidation pressure can 
be significantly reduced by 
incorporating shear wave 
velocity measurements.

• Whilst a 1D example is 
presented, the authors 
suggest that the technique 
is relevant to 2D and 3D.
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Styler & Weemees

Quantifying and reducing uncertainty in down-
hole shear wave velocities using signal stacking

M.A. Styler & I. Weemees

ConeTec Investigations, Ltd., Richmond, Canada

Aim:

• To quantify the improvement in the interpreted shear 
wave propagation time, in down-hole seismic testing, 
that can be realized through signal stacking of multiple 
traces.
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Styler & Weemees

• Concerns down-hole seismic testing using a seismic 
piezocone (SCPTU).

The extensive paper demonstrates how to:

• calculate the noise in a set of down-hole seismic traces;

• quantify the SNR for a trace and for stacked signals; and

• evaluate the error in the propagation time when comparing 
two seismic traces.
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Styler & Weemees – Conclusions

• SNR increases with signal stacking.

• The error in the propagation time decreases with higher 
SNR, and

• The decrease in SNR with depth can be countered by 
signal stacking.
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Lehane et al.

Probabilistic assessment of laterally loaded pile 
performance in sand

B.M. Lehane, F. Glisic & J.P. Doherty 

School of Civil, Environmental and Mining Engineering, 
The University of Western Australia

Aim:

• To examine the effect of spatial variability of the ground 
on the performance of laterally loaded piles using a 
series of CPTs.
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Lehane et al.

• Pile load testing carried out at Shenton Park, Perth, WA.

• Stratigraphy: 5 – 7 m siliceous dune sand overlying 
weakly cemented 
limestone.

• 2 × 225 mm diameter,
3.5 m long CFA piles.
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Lehane et al.

• 12 CPTs
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Lehane et al.

• Lateral load-displacement 
relationship predicted  
using LAP program 
incorporating the 
Suryasentana & Lehane
(S&L) (2014, 2016) 
method.

• Good agreement between 
predicted and measured 
behaviour.
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Lehane et al.

• 50 CPTs randomly 
generated

• Scale of fluctuation
estimated 0.25 – 0.5 m
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Lehane et al. – Conclusions

• The lateral load range likely to induce a given level of 
head rotation for a pile in sand is significantly lower than 
the range anticipated from the CPT qc variability.

• The CPT-based S&L Method for laterally loaded piles 
provides good predictions for the lateral response of a 
test pile at a medium dense sand site. 

• Predictions using the S&L and the API sand methods
have a low sensitivity to randomly generated  qc or ' 
profiles that are normally distributed at any given depth. 

33



Krage et al.

Identification of geological depositional variations 
using CPT-based conditional probability mapping

C.P. Krage, J.T. DeJong & R.W. Boulanger

University of California, Davis, USA

Aim:

• To improve characterization and understanding of 
subsurface stratigraphy at a project site using transition 
probability geostatistics which is conditioned to CPT 
soundings and combined with geological information.
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Krage et al.

• The authors use geostatistics in two ways to augment site 
investigations to:

1. identify or estimate the soil type at unknown locations; 
and 

2. estimate the engineering properties at these unknown 
spatial locations.
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Krage et al. – Integrated Approach
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Krage et al. – Transition Probability

• Describes the likelihood of transitioning from one 
category (where categories are user defined; can be soil 
type or engineering property based) to another over 
some separation distance. 

• The main advantage of this approach is the ability to 
model ordered systems (e.g. geologic facies
environments)
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Krage et al. – Example Case

• Site for a new 11 m high embankment dam with respect 
to liquefaction assessment.

• Geostatistical simulation was performed conditioned to 
CPTs taken along the dam wall alignment.
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Krage et al. – Conclusions

• The simulations indicate liquefaction is expected to be 
most prevalent at shallow depths:

– 1-2 m deep on the west side

– to 4-6 m deep on the east side. 

• Liquefaction is also expected at a larger depths.
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Parida et al.

Stochastic waveform inversion for probabilistic 
geotechnical site characterization 

S.S. Parida, K. Sett & P. Singla

University at Buffalo, New York, USA

Aim:

• To develop a stochastic inverse analysis methodology to 
estimate probabilistically Young’s modulus from 
geophysical test measurements by accounting for 
uncertainties from spatial variability, measurement 
errors and limited data.
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• Spectral analysis of 
surface waves (SASW)

• Monte Carlo simulation

• Uses finite element
method with the 
stochastic collocation
approach to probabil-
istically solve the 
forward problem for 
SASW.
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Parida et al. – Methodology



Parida et al. – Virtual Site
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• Used RFT to simulate 
ground profile.

• Excited the ground 
using a chirp signal.



Parida et al. – Conclusions

• The amount of information gained decreases with depth
implying that the sensors towards the bottom contribute 
modestly to the inverse estimation process.

• The developed methodology is mathematically rigorous
and computationally efficient, and is general enough to 
be extended widely.
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Wierzbicki et al.

3D mapping of organic layers by means of CPTU 
and statistical data analysis 

J. Wierzbicki, A. Smaga, K. Stefaniak & W. Wołyński
Adam Mickiewicz University, Poznań, Poland

Poznań University of Life Sciences, Poland

Aim:

• To examine selected methods of statistical data analysis
to determine the spatial extent of organic soil layers 
using CPTU data. 
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Wierzbicki et al.

• Geotechnical characterisation undertaken at a site 
located 50 km from Poznań, Poland.

• Ground at the study area consists of glacial clay, layered 
sands and gravels, silts and organic soils.

• CPTU data were subjected to clustering analysis using 
the k-means method.

• Inverse distance weighting (IDW) method was used to 
develop 2D and 3D models.
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Wierzbicki et al. – Conclusions

• Only simultaneous use of all available data allowed the 
detailed identification of the organic soil layer.

• The full 3D IDW model yielded unsatisfactory results.

• Future considerations:

– Explore geostatistics (i.e. kriging).
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Zou et al.

Assessment of ground improvement on silt based 
on spatial variability analysis of CPTU data

H.F. Zou, G.J. Cai, S.Y. Liu, J. Lin, T.V. Bheemasetti & 
A.J. Puppala

Southeast University, Nanjing, China

University of Texas at Arlington, Texas, USA

Aim:

• To examine the difference in spatial variability 
characteristics of silt before and after compaction.
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Zou et al.

• A silt site located in the Jiangsu province, China, was 
improved using a new deep resonance compaction
technique to increase the liquefaction resistance of the 
silt.

• CPTUs were performed before and after ground 
improvement to assess the efficacy of the technique.

• The study undertakes spatial variability analyses on the 
before and after CPTU data.
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Zou et al.

• RFT was used to examine cone tip resistance.

• The mean, COV and SOFv were examined prior to and 
after compaction.
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Zou et al. – Conclusions

The results showed that:

• both mean and the SOFv decreased immediately after 
compaction, but gradually increased with the strength 
and density recovery;

• COV consistently decreased after the compaction.
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Sastre et al.

Automatic methodology to predict grain size class 
from dynamic penetration test using neural 
networks 

C. Sastre, M. Benz, R. Gourvès, P.Breul & C.Bacconnet

Sol Solution Géotechnique Réseaux, France

Université Blaise Pascal, Clermont-Ferrand, France 

Aim:

• To develop an ANN to predict grain size class from 
Panda dynamic cone penetration test data.
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Sastre et al. – Panda
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Sastre et al. – Data

• The ANN model was developed using a database 
consisting of 218 Panda2 penetrograms incorporating:

– 149 tests performed in a laboratory-based calibration 
chamber, and 

– 69 in situ tests carried out at various locations in 
France.
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Sastre et al. – ANN Model Development

• Inputs: 26 (initially), reduced to 17:
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1. qd mean 10. qd Shannon entropy

2. qd median 11. qd logarithm entropy range

3. qd standard deviation 12. qd skewness

4. qd coefficient of variation 13.  qd slope changes

5. qd variance 14. qd waveform

6. qd range 15. linear coeff. of linear trend

7. qd interquartile range 16. independent coeff. of linear trend

8. qd skewness 17. maximum spectral power

9. qd kurtosis



Sastre et al. – ANN Model Development

• Inputs: 26 (initially), reduce further?
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1. qd mean 10. qd Shannon entropy

2. qd median 11. qd logarithm entropy range

3. qd standard deviation 12. qd skewness

4. qd coefficient of variation 13.  qd slope changes

5. qd variance 14. qd waveform

6. qd range 15. linear coeff. of linear trend

7. qd interquartile range 16. independent coeff. of linear trend

8. qd skewness 17. maximum spectral power

9. qd kurtosis



Sastre et al. – Optimal ANN Model

• Inputs: 17

• Hidden layers: 1

• Hidden layer nodes: 12

• Outputs: 1
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Sastre et al. – Conclusions

• ANN Model performed well, with between 94% – 97%
prediction accuracy.

• Future considerations:

– Refine ANN model input parameters.

– How will it be deployed?

– Parsimonious model may lead to an equation.
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