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1 THE PANDA 2®, VARIABLE ENERGY 
DYNAMIC CONE PENETROMETER (DCP) 

 
The dynamic penetrometer Panda 2® has been de-
signed to geotechnical investigation at shallow depth 
up to about 5 meters (Benz 2009). It is a light-weight 
dynamic, highly portable cone penetrometer, which 
uses variable energy manually delivered by the blow 
of a normalized hammer. After each blow, the dy-
namic cone resistance qd is calculated at the current 
depth using the Dutch formula. One of the major in-
terest is the high acquisition resolution. Therefore 
the plot of the cone resistance values against the 
depth, the Panda penetrogram, is a rich amount of 
information on the stratigraphy of site and soil prop-
erties (Shahour & Gourvès 2005) with a large num-
ber of data. 

Despite all the benefits provided by the Panda 2® 

soil samples cannot be taken during the test thus 
there is no information about the nature of soil. 
However we notice empirically that the form of the 
cone resistance curve might differ between different 
types of soil. An example shows (Fig.1), with 3 Pan-
da® tests conducted on laboratory calibration cham-
ber of 80 cm height. The tested soils have a different 
nature and granulometry but a similar density and 
moisture content. We can easily note the morpholog-
ical differences between the 3 resistance logs. The 
underlying idea for the methodology described in 
this paper relies on this observation: the expert 
knowledge and perspective of an experienced engi-
neer can detect indices in the signal form to estimate 
the nature of the tested soil. In this study, we have 

developed a model based on artificial neural network 
to accomplish this empiricism. 

 
Table 1.  Soil parameters for the samples (Fig.1) 

Nature DGA Silt  Laschamps 

Clay  

Sayat Sand  

GTR A1 A2 B2 

γh  kN/m3 17.8 17.6 17.3 

γd  kN/m3 16.2 15.6 16.0 

W  kN/m3 10.0 12.9 7.9 

WOPN  % 18.4 18.1 11.0 

Moisture state Dry Dry Dry 

 

 
Figure 1. An example of a resistance log for different types of 
soils with similar state parameters. 

 
ABSTRACT: The Panda 2®, developed by Roland Gourvès in 1991, is a lightweight dynamic cone penetrom-
eter. It provides the dynamic cone resistance (qd) and depth in real time with a high sampling frequency. Nev-
ertheless it cannot take soil samples so the penetration test is called ‘blind’. The aim of this paper is to pro-
pose an automatic methodology to predict the soil grading from the cone resistance using artificial neural 
networks. We have built a database based on the Panda® laboratory tests on soil samples and on in situ tests 
conducted next to boreholes during various geotechnical studies performed in France. Then the neural net-
work was used to classify the cone resistance logs according to grain size distributions of the tested soils by 
means of feature extraction using different signal analysis. The results show that we are able to separate 4 soil 
classes with 98% accuracy.  
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2 ARTIFICIAL NEURAL NETWORKS  

2.1 Introduction 

ANN are mathematical models inspired in the hu-
man nervous system and has been effectively applied 
in many engineering applications. ANN are artificial 
intelligence (AI) tools to analyse the raw data and 
extract useful knowledge (Fayad et al. 1996) and to 
support selection problems. Furthermore ANN is 
known to be an alternative method for modelling 
complex problems in different fields of engineering 
(Shahin et al. 2001, Waszcsyszyn 2011).   

2.2 Proposed ANNs models  

Among several types of ANNs models used for data-
analytic applications, multilayer perceptron MLP 
(Rumehart et al. 1986) and probabilistic neural net-
work PNN (Spetch 1990) have been chosen.  These 
models are feedforwards networks consist of multi-
ple layers of interconnected neurons. We can distin-
guish 3 types of layers, input layer, hidden layer and 
output layer (Fig. 2). The neurons of the input layers 
are just used to stock the inputs values. The neurons 
of hidden and output layer are calculation cells. They 
compute a weighted sum of their inputs and then the 
activation function is applied to the sum in order to 
generate their output value. They are called feedfor-
ward networks because the input signal always 
moves one direction only, from input to output, and 
it never goes backwards. 

The current training algorithm for this networks is 
the back-propagation method (Rumerhart et al. 
1986).  This algorithm involves 2 phases. Firstly the 
propagation phase where the training pattern’s input 
are propagated from the input to the output layer. 
The second phase is the backward phase where the 
output error at a defined layer backwards through the 
connections with the previous layer in order to up-
date the weights to find the minimum of the error 
function. That is known as the learning process of 
the ANN. The goal of the learning process is to find 
the optimal set of weights which would produce the 
right output for any input ideal case. 

 
 
Figure 2. An example of a simple feedforward neural network. 

 

Consequently the algorithm requires the target 
value for each input value to calculate the loss func-
tion gradient. It is for this reason that it is considered 
to be a supervised learning algorithm fundamentally. 
The term supervised refer to the labeled training da-
ta.  In our context it may be possible to apply a su-
pervised learning if we develop a cone resistance log 
data base and each sample has an appropriated soil 
class as output. In this way we could think about a 
model with an associative memory which would be 
able to predict the soil class from the cone resistance 
log based on a knowledge obtained from a labeled 
database. 

MLP modelling has been used most often in ge-
otechnical literature (Shahin et al. 2008). Further-
more MLP are universal approximators in the sense 
that they can compute an approximation that is good 
as we want even with only one hidden layer. On the 
other hand, PNN are frequently used in classification 
problems. They have a similar structure to MLP. The 
main difference is the change of the sigmoid or hy-
perbolic activation function often used in MLP to-
pology by a statistically derived one, a radial base 
function, normally the Gaussian function. Unlike 
MLP, PNN approaches optimal Bayes classification 
and the outputs could also be used to estimate a pos-
teriori probability that an output belongs to a defined 
category. On the other hand, one of the main diffi-
culty of MLP paradigm is the fact to estimate the 
number of hidden layers and the number of neurons 
of each layer. However the PNN has always 2 hid-
den layers the pattern layer and the summation layer 
respectively. The first layer always contains one neu-
ron for each case in the training data set and the sec-
ond layer contains a number of neurons equal to 
number of defined targets. I  

2.3 ANNs in geotechnical problems 

In the geotechnical context, ANNs are considered as 
powerful modelling tools to deal with the uncertain-
ty and extreme variability of most of the problems. 
In addition, ANNs have also demonstrated a major 
performance when compared with traditional statis-
tical models. Therefore, since the early 1990s, ANNs 
have been applied successfully to several problems 
in geotechnical engineering (Shahin et al. 2009).  In-
terested reader can refer to (Shahin et al. 2001, 2008, 
2009) where the application of ANNs in geotech-
nical problems are examined.  

(Sulewska 2011) pointed out the following six se-
lected problems: 1) prediction of the Overconsolida-
tion Ratio, 2) estimation of potential soil liquefac-
tion, 3) prediction of foundation settlement, 4) 
evaluation of piles bearing capacity, 5) prediction of 
cohesive parameter for cohesive soils, 6) compaction 
built of cohesionless soils. The ANNs applied are all 
MLP with only one hidden layer. The number of 
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hidden neurons varies from 1 to 8.  The excellent re-
sults confirm the interest of the application of ANNs 
in the geotechnical field, where the choice of ANNs 
models to regression problems is constantly increas-
ing. 

Despite all the benefits presented by ANNs, one 
of the major criticisms is that they are black boxes 
models, since no satisfactory explanation of their 
behavior could be achieved so far. The knowledge 
extraction is one of principal research topics in this 
field. In addition, ANN models often need a large 
database to perform an effective learning of the pat-
terns. The number of samples dependent upon the 
problem to solve and cannot be estimated a priori. 
This fact could be a constraint on the application for 
certain geotechnical problems. 

3 PROPOSED METHODOLOGY 

The aim of this study is to propose an automatic 
methodology able to classify a sol according to its 
granulometry from a cone resistance signal provided 
by Panda2® test.  This project is divided into 4 phas-
es: Panda test database creation; input variable selec-
tion; output model; performance model validation. 

3.1 Panda test database  

The first step in a machine learning problem is the 
database acquisition. The database creation is neces-
sary to allow the ANNs models observe the envi-
ronment and learn to make reasonable decisions 
about the categories of the patterns.  

A database of penetrograms provided by the Pan-
da2® test has been created. It contains 218 penetro-
grams obtained from sufficiently homogeneous soils 
with no grain size over 50mm. Their nature and ge-
otechnical properties have been characterized by 
means of laboratory test. Samples have been provid-
ed by laboratory and in situ test. The soil classifica-
tion available for the tested soils based on GTR 
guide (SETRA & LCP 1992).  

The laboratory Panda test were realized in a 37 
cm diameter and 80 cm height calibration chamber, 
by using static loading under oedometric conditions 
(Chaigneau 2000). These tests were performed in 
more than 20 different soil types. Panda tests were 
carried out for each sample constituted. The part of 
the penetration curve where the cone resistance ex-
hibit constant values was extracted and submitted to 
the posterior signal analysis. A total of 149 laborato-
ry test have been recollected with a dry and medium 
water moisture.  

On the other hand, there are 69 Panda2® in situ 
tests performed during several site characterization 
studies by the French company Sol Solution.  In situ 
test are located in France, specifically in Auvergne 
department. 

3.2 Feature extraction and variable selection 

The second step involves the definition of entries of 
ANN model. The choice of input variables is fun-
damental to assure the model performance. This 
stage is called feature extraction and mainly consists 
of a short-term processing technique that is applied 
on the observed data in order to generate a feature 
sequence, the pattern.  

We have carried out a feature extraction based on 
four analysis signal applied to cone resistance curve 
Inspired by analysis processing for speech recogni-
tion or bioelectrical signal analysis (Shannon 1948a, 
b, Kannatey-Asibu 1982, Hayes 1996, Betancourt 
2004, Romo et al. 2007).  We have applied 4 signal 
analysis: statistical, nonlinear, and morphological 
and spectral and a pattern vector of 26 parameters 
for each penetrogram have been obtained.  

Variable selection is intended to select the best 
subset of predictors, removing redundant predictors 
and defying the curse of dimensionality to improve 
classification performance. In this work we have 
performed a local sensitivity analysis using one -at-
a-time approach (OAT). One benefit of OAT is one 
of the simplest approach and it can be applied to all 
numerical models so we have chosen this method for 
practical reasons.  Rabitz H. (1989) and Saltelli 
(2006) offer an interesting review about the use of 
sensitivity analysis strategies for model-based infer-
ence in different articles.  

OAT techniques analyze the effect of one pa-
rameter on the cost function at a time, keeping the 
other parameters fixed. Note that they explore only a 
small fraction of the design space but is enough to 
allow a quick detection of model inputs what don’t 
have any significant influence in the output value. In 
this instance 3 perturbation values have been consid-
erate, calculated as a percentage of the standard de-
viation for each input variable (Fig.3). Another per-
turbation equal to input variable variance have been 
also used. After each modification the variation of 
error is calculated in order to measure the individual 
impact of each entry parameter.    

 
Table 2.  Parametrization of cone resistance log. 

Number of parameter 
1. qd mean 7. qd interquartile 

range 

13. qd slope 

changes 

2. qd median 8. qd skew 14. qd waveform 

3. qd standar devia-

tion 

9. qd kurtosis 15. Linear coeffi-

cient of linear 

trend 

4. qd coefficient of 

variation 

10. qd Shannon en-

tropy 

16. Independent 

coefficient of line-

ar trend 5. qd variance 11. qd logarithm 

entropy range 

6. qd range 12. qd skew 17. Maximum 

spectral power 
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Figure 3. Results of the sensitivity analysis for the 26 original 
characteristics. 

 
Analyzing the results of OAT approach used, we 

have realized that there are 9 inputs variables rela-
tive to cone penetration analysis which modification 
have no influence on the ANN accuracy classifica-
tion. They are rejected and the number of input vari-
ables have been reduced to 17. In other terms, for 
every cone resistance log of the database, a final fea-
ture vector of 17 parameters (Tab.2) is thus con-
structed to be the entry for the ANN model. 

3.3 Target classes  

The next stage is to decide what outputs are the neu-
ral network expected to learn.  The aim is to classify 
the nature soils in terms of granulometry. As we 
have explained in the previous section 3.1, the data-
base soils collected are classified in GTR classifica-
tion. In the following, the 4 output classes proposed 
(Tab.3) are based on this soil classification. We have 
used a binary coding, namely “dummy”. Each dum-
my variable is given the value zero except for the 
one corresponding to the correct category, which is 
given the value one.  
 
Table 3. Target classes based on tested soils. 

Target GTR Nature Codification 

Class 1 A1 A2 A3 A4 
Fine 

soils 
1 0 0 0 

Class 2 B5 B6 
Fine 

sands 
0 1 0 0 

Class 3 D1 B1 B2 
Sands, 

gravel 
0 0 1 0 

Class 4 D2 B3 B4 Gravel 0 0 0 1 

 

 
 
Figure 4. Percentage passing through the sieve opening 2 mm 
and 80 µm for the database soils. 

 
The 2 opening size of sieves used to classify the 

soils in GTR are 2 mm and 80 µm. The percentage 
of grains passing through these openings is plotted 
(Fig.4) for the database soils.   

3.4 Design phase for MLP classifier 

The precise network topology required for an MLP 
to solve a particular problem usually cannot be de-
termined (Leverington 2009), although research ef-
forts continue in this regard. In contrast, PNN net-
works don’t have this issue because their 
architecture is fixed by the size of the problem as we 
have explained in section 2.2.  

In this regard we have trained several networks in 
order to choice the best MLP parameters architecture 
using the root mean squared error RMSE as error 
function (Hetch-Nielsen 1990). It is the most popular 
measure of error and has the advantage that large er-
rors receive much greater attention than small errors.  

We note that the input and output data must be 
preprocessed for ANNs problems. Data prepro-
cessing will allow the model produce accurate fore-
casts. Normalization and standardizing are the two 
most used preprocessing methods so we have tested 
it. Specifically we have applied a normalization scal-
ing the data to the interval [-1, 1] and a standardiza-
tion scaling inputs to have mean 0 and variance 1. 
The better results have been obtained with a normal-
ization preprocessing and the hyperbolic function as 
activation function for the hidden and the output lay-
er.  

Finally to estimate the optimal number of hidden 
units we have varied the number of hidden neurons 
of the trained networks from 2 to 25, and we also 
have run several test to take account of the random 
initialization weights effect. We have also tested 
MLP with one and two hidden layers and we have 
obtained a better generalization with just one.  The 
final MLP model proposed has one hidden layer 
with 12 neurons and the Levenberg-Marquardt (Le-
venberg 1944, Marquardt 1963) as training function. 
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Finally we add that early stopping method was used 
in all the run test to avoid overfitting. 

3.5 Performance of proposed ANN models 

To avoid overfitting, the ANN model should use a 
set different set unknown for the ANN. For that pur-
pose, we carried out a Hold-Out validation (Bishop 
1995). This method needs to divide the large dataset 
to three subset. Then the classifier is tested by new 
databases called validation and test sets. In this study 
the data have been randomly divided into these three 
subsets. The fraction of the data that is placed in the 
training set is 70% and 15% for the validation and 
test sets. However, the way the data are divide can 
have an important impact on model performance 
(Shahin et al. 2004) and the statistical properties of 
the various data subsets should be taken into account 
as a part of any data division procedure. 

The matrix confusion summarize the classifica-
tion of each dataset for MLP final model (Tab.3). 
This table is often used to describe the performance 
of a classification model. In this matrix, each col-
umn number represents the instance in target or ac-
tual class while each number row number represents 
the instance of predicted class.  

 
Table 4. Confusion matrix for MLP proposed 

  Training   Validation 

O
u

tp
u

t 

Class 1 75 2 0 0  17 1 0 0 

Class 2 1 18 0 0  0 2 0 0 

Class 3 0 0 25 0  0 0 7 0 

Class 4 0 0 0 31  0 0 0 6 

  Test  Total 

O
u

tp
u

t 

Class 1 18 0 0 0  110 3 0 0 

Class 2 0 3 0 0  1 23 0 0 

Class 3 0 0 5 0  0 0 37 0 

Class 4 1 0 1 5  1 0 1 42 

  Target class  Target class 

 

We note that MLP proposed has assigned the 
right class to 212 samples from a total of 218 that 
means an accuracy of 97% from the total database. 
The 97% and 94% accuracy have achieved for the 
validation and test sets respectively.  

4 DISCUSSIONS AND CONCLUSIONS 

In this paper we have proposed an automatic meth-
odology to predict grain size class from dynamic 
penetration test and the classification task is carried 
out by 2 different ANN, an MLP and a PNN. The 
both network have achieved excellent results. Never-
theless further studies and samples may be needed to 
assess its application in situ. 

Regarding performance of each model of ANN 
used in this study, we think that the 2 topologies 
have proved their efficiency. Nevertheless, PNN 
may be more interesting than MLP to detect novel 

cases since it is a model based on probability density 
estimation.  

It can be noted that the application of ANNs have 
been possible due to characteristics of cone re-
sistance log provided by Panda test. In addition, in-
corporation of other soil measurements as soil imag-
es by means of geo-endoscopy technique (Breul 
1999, Haddani 2004) or Panda3 measures (Benz 
2009, Escobar 2014) could be helpful. Work in this 
area is ongoing. 

5 REFERENCES 

Benz-Navarrete M.A. 2009. Mesures dynamiques lors du 
battage du pénétromètre PANDA 2. Chemical and Process 
Engineering. Université Blaise Pascal-Clermont-Ferrand 
II. 

Betancourt G., Giraldo E., Franco J. 2004. Reconocimiento de 
patrones de movimiento a partir de señales electromiográfi-
cas. Scientia et Técnica vol.26: 53-58. 

Breul P. 1999. Caractérisation endoscopique des milieux gra-
nulaires couplée à l’essai de pénétration. Thèse de doctorat 
Physique Clermont-Ferrand 2. 

Chaigneau L., Bacconnet C., Gourvès R. 2000. Penetration test 
coupled with geotechnical classification for compacting 
control. Proceedings of International Conference on Ge-
otechnical & Geological Engineering, GeoEng2000 (Mel-
bourne, Australia. 

Escobar E.J. (2015). Mise au point et exploitation d’une nou-
velle technique pour la reconnaissance des sols : le Panda 3. 
Thèse de doctorat Génie Civil Clemont-Ferrand.  

Fayyad U., Piattetsky-Shapiro G., Smyth P. 1996. The KDD 
process for extracting useful knowledge from volumes of 
data. Commun ACM 39 vol.11: 27-34. 

Hadanni Y. 2004. Caractérisation et classification des milieux 
granulaire par géondoscopie. Thèse de doctorat Génie Phy-
sique Clermont-Ferrand 2. 

Hayes M.H. 1996. Statistical Digital Signal Processing and 
Modeling. Ed Wiley.  

Hecht-Nielsen, R. 1990. Neurocomputing. Addison-Wesely 
Publishing Company, Reading, MA. 

Hornik K. and Stinchcombe M. and Halbert W. 1989. Multi-
layer feedforward networks are universal approximators. 
Neural Networks vol.2 (5): 359-366. 

Kannatey-Asibu E., Dornfeld D.A. 1982. Wear vol.76: 247-
261.  

Levenberg K. 1944. A Method for the Solution of Certain 
Problems in Least Squares. Quart. Appl.Math. vol.1: 431-
441. 

Leverington D. 2009. A Basic Introduction to Feedforward 
BackPropagation Neural Network. Geosciences Depart-
ment Texas Tech University. 

Marquardt D. 1963. An Algorithm for Least-Squares Estima-
tion of Nonlinear Parameters. SIAM J. Appl. Math. vol.2: 
164-168. 

Rabitz H. 1989. Systems analysis at the molecular scale. Sci-
ence vol.246 (4927): 221-6. 

Romo H.A., Realpe J.C., Jojoa P.E. 2007. Análisis de Señales 
EMG Superficiales y su Aplicación en Control de Prótesis 
de Mano. Revista Avances en Sistemas e Informática vol.4 
(1): 128-136. 

Rumelhart D.E., Hinton G.E., Williams R.J. 1986. Learning in-
ternal representations by error propagation. Parallel distrib-
uted processing: Explorations in the microstructure cogni-
tion vol.1: 318-362. 

1469



Saltelli A., Ratto M., Tarantola S., Campolongo F, European 
Commision, Joint Research Centre of Ispra(I) 2006. Sensi-
tivity analysis practices: strategies for model-based infer-
ence. Reliability Engineering & System Safety vol.91 (10-
11): 1109-1125. 

Sarle W.S. 2002. The Neural Networks FAQ. 
ftp://ftp.sas.com/pub/neural/FAQ.html 

SETRA & LCP 1992. Technical Guidelines on Embankement 
and Capping Layers Construction. Guide technique. 

Shahin M.A., Jaksa M.B., Maier H.R. 2001. Artificial Neural 
Network applications in geotechnical engineering. Australi-
an Geomechanics-March. 

Shahin M.A., Jaksa M.B., Maier H.R. 2004. Data Division for 
Developing Neural Networks Applied to Geotechnical En-
gineering. Journal of Computing in Civil Engineering 
vol.18 (2), 105-114. 

Shahin M.A., Jaksa M.B., Maier H.R. 2008. State of the art of 
artificial neural networks in geotechnical engineering. Elec-
tronic Journal of Geotechnical Engineering. 

Shahin M.A., Jaksa M.B., Maier H.R. 2009. Recent Advances 
and Future Challenges for Artificial Neural Systems in Ge-
otechnical Engineering Applications. Advances in Artificial 
Neural Systems vol. 2009: 9.  

Shahrour I., Gourvès R. 2005. Reconnaissance des terrains in-
situ. Hermès-Lavoisier. 

Shannon C.E. 1948a. A mathematical theory of communication 
Part I. Bell System Technical Journal vol.27: 379-423. 

Shannon C.E. 1948b. A mathematical theory of communication 
Part II. Bell System Technical Journal vol.27: 623-656. 

Spetch D.F. 1990. Probabilistic neural network. Neural Net-
works vol.3: 109-118. 

Sulewska M.J. 2011. Applying Artificial Neural Networks for 
analysis of geotechnical problems. Computer Assisted Me-
chanics and Engineering Sciences vol.18 (4): 231-241. 

Waszczyszyn Z. 2011. Artificial Neural Networks in civiel en-
gineering: another five years of research in Poland. Com-
puter Assisted Mechanics and Engineering Sciences vol.18: 
131-146. 

 

 
 

1470


